
www.manaraa.com

Protecting
SQL Server Data
John Magnabosco

High Performance SQL Server

ISBN: 978-1-906434-26-7

www.manaraa.com

Protecting SQL
Server Data

By John Magnabosco

First published by Simple Talk Publishing September 2009

www.manaraa.com

Copyright John Magnabosco 2009

ISBN 978-1-906434-26-7

The right of John Magnabosco to be identified as the author of this work has been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored or introduced into a
retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying,
recording or otherwise) without the prior written consent of the publisher. Any person who does
any unauthorized act in relation to this publication may be liable to criminal prosecution and civil
claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent,
re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form other
than which it is published and without a similar condition including this condition being imposed
on the subsequent publisher.

Editor: Tony Davis

Typeset by Gower Associates.

www.manaraa.com

Table of Contents
About the Author.. xi

Acknowledgements... xii

Introduction... xiii
Rules, Regulations and Responsibility...........................xiii
Overcoming Encryptionphobia..xiv
What this Book covers..xvi
Code Download..xvii
Feedback..xviii

Chapter 1: Understanding Sensitive Data..................... 19
What Makes Data Sensitive?...19

Personal, Identifiable and Sensitive Data����������������������� 20
Implications of Data Theft��� 22
Compliance with Regulations�� 24

Types of Sensitive Data...24
Government Assigned Identification������������������������������� 25
Biometric Data�� 26
Medical Data and History�� 27
Student Education Data�� 28
Employment Records�� 29
Communication Data�� 30
Financial Data��� 31
Trade Secrets�� 33

Group Dynamics of Sensitive Data...................................34
Data at Rest and Data in Transit..35
Shields and Swords...36

Data Classification�� 36
Schema Architecture��� 37

www.manaraa.com

Obfuscation��� 37
Monitoring��� 38

Summary...38

Chapter 2: Data Classification and Roles..................... 39
Introducing the HomeLending Database.........................39
Defining Classes of Sensitivity...41
Data Classification Based on Data Sensitivity................42
Defining Roles According to Classification.....................43

Creating Database Roles�� 45
Creating Logins and Users��� 46
Assigning Members to Roles�� 48
Assigning Permissions to Roles�������������������������������������� 50

Evaluating Data for Classification....................................54
Using Extended Properties to Document Classification.56
Refining the Sensitivity Classes.......................................62

Disclosure Damage Potential�� 62
Specialized Cases�� 63

Defining Policies According to Classification.................64
Summary...66

Chapter 3: Schema Architecture Strategies................. 67
Overview of HomeLending Schema Architecture...........67
Protection via Normalization...69

First Normal Form��� 70
Second Normal Form�� 70
Third Normal Form�� 71
Normalization and Data Redundancy����������������������������� 72
Normalization and Data Security������������������������������������ 73
Normalization and the Borrower_Identification table������ 74

Using Database Object Schemas......................................75
Using Views..78

www.manaraa.com

Creating Views�� 80
Assigning Permissions to Views������������������������������������� 81

Harnessing Linked Servers...82
Implementing Linked Servers��� 84
Querying Linked Servers�� 87
Network Security��� 88

Summary...88

Chapter 4: Encryption Basics for SQL Server.............. 89
Cryptographic Keys...90

Cryptographic Key Hierarchy�� 90
Service Master Key��� 91
Database Master Key��� 92
Asymmetric Key�� 92
Certificates�� 93
Symmetric Key�� 94
Database Encryption Key��� 95
Passwords�� 95

Key Maintenance..96
Extensible Key Management (SQL Server 2008)����������� 97
Backing up Keys��� 98

Key Algorithms...99
Symmetric Key Algorithms�� 100
Asymmetric Key Algorithms�� 101
Hashing Algorithms��� 102

Built-In Cryptographic Functions...................................103
Encryption Catalog Views...104
Summary...106

Chapter 5: Cell-Level Encryption................................. 107
Granularity of Cell-level Encryption...............................108
Benefits and Disadvantages of Cell-Level Encryption.108

www.manaraa.com

Special Considerations.. 110
Searching Encrypted Data�� 110
Encrypting Large Plain Text Values��������������������������������111

Preparing for Cell-Level Encryption............................... 112
Reviewing the Borrower_Identification Table���������������� 112
Database Object Access Control���������������������������������� 114
Key Encryption and Performance��������������������������������� 115
Determining the Key Hierarchy������������������������������������� 116

Implementing Cell-Level Encryption.............................. 117
Implementing the Key Hierarchy����������������������������������� 117
Required Schema Modifications����������������������������������� 122

Views and Stored Procedures...126
Failed Decryption Handling��� 126
Data Modification Handling��� 127
Creating the View�� 127
Creating the Stored Procedures����������������������������������� 130

Summary...135

Chapter 6: Transparent Data Encryption.................... 136
How TDE Works..137
Benefits and Disadvantages of TDE...............................138
Considerations when Implementing TDE.......................139

Master Key Interdependency�� 139
Performance Impact on TempDB���������������������������������� 139
TDE and Decryption�� 140
Backup and Recovery��� 140
TDE and Replication��� 141
TDE and FileStream Data��� 141

Implementing TDE..142
Backup before Proceeding�� 142
The Master Database��� 143

www.manaraa.com

The User Database��� 145
Verifying TDE..146

Using Dm_Database_Encryption_Keys������������������������ 147
Verification through Backup and Recovery������������������� 149
Using EXECUTE AS��� 151

Reversing the Implementation of TDE............................152
Summary...155

Chapter 7: One-Way Encryption.................................. 157
How One-Way Encryption Works....................................158
Benefits and Disadvantages of One-Way Encryption...159
Known Vulnerabilities..160

Dictionary Attack Vulnerability��������������������������������������� 160
Rainbow Table Attack Vulnerability������������������������������� 162
Hash Collision Vulnerability��� 164

Reducing Vulnerability: Salting a Hash..........................165
Implementing One-Way Encryption................................168

Create the Primary Hash Column��������������������������������� 169
Create a Secondary Hash Column for Searching��������� 170
Populate the Hash Columns��� 171
Verify the Implementation��� 172
Drop the Unencrypted Column������������������������������������� 173

Creating the Interface...173
Creating the View�� 174
Creating the Stored Procedures����������������������������������� 175
Setting and Verifying Permissions to the Stored
Procedures�� 179

Summary...181

Chapter 8: Obfuscation... 182
Development Environment Considerations...................182
Obfuscation Methods...183

www.manaraa.com

Character Scrambling��� 186
Repeating Character Masking�������������������������������������� 188
Numeric Variance�� 191
Nulling��� 193
Truncation��� 194
Encoding��� 195
Aggregation��� 196

Artificial Data Generation..198
Summary...198

Chapter 9: Honeycombing a Database........................ 199
Implementing a Honeycomb Table.................................199
Creating a Server Audit..201
Creating a Database Audit Specification........................202
Reviewing the Windows Application Log.......................204
Creating an Operator for Notification.............................205
Creating an Alert for Notification....................................207
Creating a Notification...209
Summary...210

Chapter 10: Layering Solutions....................................211
View from the Top Floor... 211
Design for Protection...212
Applied Permissions and Database Objects.................212
Cell-Level and One-Way Encryption...............................213
Obfuscation...214
Eyes in the Back of the Head..214
Good Habits..214
Educate, Educate, Educate..215
Conclusion..215

Appendix A: Views and Functions Reference............ 218
Encryption Catalog Views Reference.............................218

www.manaraa.com

Sys.Asymmetric_Keys�� 218
Sys.Certificates��� 218
Sys.Credentials��� 219
Sys.Crypt_Properties�� 219
Sys.Cryptographic_Providers��������������������������������������� 219
Sys.Key_Encryptions�� 220
Sys.OpenKeys�� 220
Sys.Symmetric_Keys�� 221

Built-In Cryptographic Functions Reference.................221
AsymKey_ID��� 221
Cert_ID�� 222
CertProperty�� 222
DecryptByAsymKey�� 223
DecryptByCert��� 224
DecryptByKeyAutoAsymKey��� 224
DecryptByKeyAutoCert��� 225
DecryptByKey��� 226
DecryptByPassphrase�� 227
EncryptByAsymKey�� 228
EncryptByCert��� 228
EncryptByKey��� 229
EncryptByPassphrase��� 229
Key_ID�� 230
Key_GUID��� 230
SignByAsymKey��� 230
SignByCert�� 231
VerifySignedByAsymKey�� 232
VerifySignedByCert��� 233

String Manipulation Function Reference.......................233
ASCII and CHAR�� 234
LEFT, RIGHT and SUBSTRING������������������������������������ 234

www.manaraa.com

REPLACE��� 236
REPLICATE and SPACE�� 236
REVERSE��� 237
STUFF�� 238
RAND�� 238

Appendix B: The HomeLending database.................. 239
Database Creation Scripts...239
Database Roles, Users and Schema Scripts.................239
Encryption Scripts..240
Obfuscation and Honeycombing Scripts.......................240
Creating the HomeLending Database.............................241
Creating the HomeLending Database Tables................242
Executing Subsequent Scripts..242

Index... 243

www.manaraa.com

xi

About the Author

It all started when my supervisor called me in to her office and handed me an
install disk, or more correctly a floppy disk, of a database system and said "I
need you to learn this."

This request was not entirely random. I had dabbled with programming off
and on throughout my youth with my father's TRS-80 Color Computer. I had
worked myself up from delivering coffee and paper clips to the home lending
department of a local bank. In that department opportunities arose for me to use
my programming skills for automating mundane tasks which was motivated by
the desire to never see an IBM Selectric typewriter again.

With this experience behind me, and my supervisor's request pointing the way
to my future, I accepted the disk and eagerly began to cross that threshold into
the wonderful world of databases. As the years passed and I began to learn
and understand normalization, data modelling, data transformation, interface
development, data warehousing, backup and recovery, performance and
security, my love and passion for this new world quickly grew.

Through this nearly twenty year journey, I have been able to create database
systems for the benefit of the banking industry, State government, and more
recently heading the Data Services group of one of the fastest growing
businesses in the United States.

The technical community was there for me in my formative years offering me
deeper explanations of concepts and sharing of ideas with peers. I consider
myself very fortunate to give back to this community for the benefit of others
who are now where I was many years ago. Through my participation as a
co-founder of local organizations such as the Indianapolis Professional
Association for SQL Server (www.IndyPASS.org) and IndyTechFest
(www.IndyTechFest.org) my home town of Indianapolis is one of the most
active SQL Server communities in the country. In wider circles of influence I
have authored articles at DevX.com, provided snack-style instructional videos
at JumpstartTV.com and presented on sensitive data solutions at SQL
Saturday events.

You can find my latest contribution to the sensitive data dialog at my blog:
http://www.simple-talk.com/community/blogs/johnm/default.aspx.

http://www.IndyPASS.org
http://www.IndyTechFest.org
http://www.simple-talk.com/community/blogs/johnm/default.aspx

www.manaraa.com

xii

Acknowledgements

Books are not written without the help and support of others. I have been very
blessed to have a superb network of family, friends and associates who supplied
me with the support, encouragement and references, the absence of which
would have rendered this project nearly impossible.

Special thanks to: Tony Davis, my editor who made the writing process a joy.
To my friends and family who supported and encouraged my determination to
write this book, specifically: Brad McGehee, Brian Kelley, Andy Warren,
Steve Jones, Suzanne Meehle, David Leininger, Eric Burch, Ray Lucas,
Claire Reagan, Casey Reagan, Simson Garfinkle, "The" Jimmy May, Tom
Pizzato and, of course, my loving wife Donna.

On a lighter note, I would like to offer a special thank you to the Grateful
Dead, Jefferson Airplane, Bob Dylan and Neil Young for their aid in fueling
the creative furnace and defining the soundtrack of this book.

www.manaraa.com

xiii

Introduction

For as long as there has been something to communicate between two persons
there has been data. The image of a buffalo hunt inscribed upon the walls of a
cave, or a sequence of notches pressed into clay, were early attempts to store
this data for later reference. Many generations later, we utilize the data that our
ancient ancestors generated to better understand their world and ours.

Today, vast volumes of data are gathered about almost every individual and
business. It is the information that we provide when we sign up for an account
at our favorite website, send an e-mail, fill out a job application, or apply
for a mortgage. It is the information that is stored in a spreadsheet on your
employer's server. It is the purchasing habits of customers on Amazon.com or at
the neighborhood grocer, stored within their data warehouse.

Some of this data is innocuous, such as the artist's name of an album that is
purchased, while some of it is highly sensitive, such as the credit card number
that is used in the purchase. This data is stored at various locations, with a
range of different levels of security applied to it. When the level of sensitivity is
determined to be high, additional steps to secure the data are required to ensure
that its disclosure is appropriately handled.

Rules, Regulations and Responsibility

We all, sometimes unwittingly, supply sensitive data about ourselves or the
company we work for. When we participate in commerce, file documents with
government agencies or share casually in a conversation with a friend, we
disclose information about ourselves. It is our responsibility to recognize what
is appropriate for the exchange and what is not. While we like to think of our
home as our sanctuary, sensitive data is often the target of home robberies. The
storage of credit cards, tax returns and other sensitive documents in a secured
location is advised.

The consequences of mishandling sensitive data can be severe. Some industries
are regulated by privacy acts, defined by a governmental body. The fines placed
on businesses that do not comply with these regulations can be very heavy.
Even more damaging is the loss of customer confidence that results when

www.manaraa.com

xiv

Introduction

these breaches of security occur. Expensive legal suits are not uncommon for
businesses that have suffered a loss of sensitive data.

In all cases, the consequences to the subject of the data are damaging. The
laptop that contained a spreadsheet of sensitive information, stolen from an
employee's car, can easily result in the company's client becoming a victim
of identity theft. The loss of account information from a database can grant to
an otherwise unauthorized person access to the client's funds and additional
sensitive data. The resolution of the lost sensitive data can cost a lot of money,
time and resources which can have a dramatic affect on the client's quality of
life and economic stability.

The responsibility of protecting sensitive data is one of no small measure. This
responsibility is shared between the providers of sensitive data and the keepers
of this valuable asset. The Database Administrator and Security Officer are the
last line in defending the data that is entrusted to the business. The Security
Officer defines and enforces the policies that provide security from the human
element of managing data security. The Data Administrator designs the security
architecture and executes the features of the database that keep the data in the
hands of the good-guys.

Overcoming Encryptionphobia

The general topic of protecting data and the database is quite an expansive one.
A few of the tactics used in this effort include server hardening, user access
maintenance, managing data in memory, socket management, prevention of
SQL injection, development of polices that protect employees from social
engineering attempts as well as practices that protect a business from their own
personnel. While critical to the overall security effort these items are not within
the scope of this specific book.

The focus of this book is protecting sensitive data that is "at rest" and stored
within our SQL Server database. Devices and methods that protect data
externally from the database, such as firewalls, secured network connections
and user interface cryptography methods, are all important, but the overall
success of your efforts to protect sensitive data will depend upon how well you
guard the data in your databases. In order to do this, the DBA needs to employ
the encryption and obfuscation techniques that are available within SQL Server,
and that are discussed throughout this book.

www.manaraa.com

xv

Introduction

I recently had a conversation regarding data security and encryption, to which
the closing statement was "encryption is just another way for data to be lost". It
is a worryingly common sentiment. In any given conversation about encryption
it is nearly certain that the question "What happens if the key is lost?" will
be asked. Of course, it is a valid concern. After all, a lost key means that the
encrypted data cannot be decrypted and therefore is lost. However, the fear of
the "lost key" is not a valid reason to avoid encryption altogether.

When I was a student, a recurring nightmare of mine was the forgotten locker
combination. The scenario would be that I was rushing through the halls on my
way to a very important examination; but, first there was "something" I needed
out of my locker. As I began to spin the dial on the lock of my locker I soon
realized that its combination had slipped my memory. In desperation I began
trying random numbers in the hope that I would guess the code. A stream of
students making their way into their classrooms buffeted me to a fro elevating
my anxiety. The hallway gradually cleared and the din of chatting reduced
to the clapping echo of the final student's footsteps. Thankfully, this never
happened in real life.

This is the fear of not being able to access something of value when it is
needed. It is the fear of the fragile nature of our memories, and of the inability
to recall the "special code" in a time of need. It explains why passwords are
found scribbled on a Post-it® note and stuck to the monitor screen. It is a
key reason that more advanced protection methods for sensitive data, such as
encryption, are avoided.

If encryption is implemented without careful planning and without a
maintenance strategy, it can become a hairy mess; but isn't this also true of
any aspect of data and database administration? Without regular backups
and careful attention to data integrity, a database is at a high risk of data loss,
regardless of whether or not you use encryption.

Encryption requires careful consideration of what should be protected and the
extent of its application. Granting permissions to the keys, and performing any
necessary schema modifications to accommodate the encrypted values, are
also a part of the implementation process Once encryption is implemented it
requires periodic maintenance of retiring aging encryption keys with fresh ones.
This practice ensures the continued effectiveness of the keys.

A fundamental aspect of the whole process is backing up the encryption keys
and storing them in a safe location. If these practices are followed, the DBA's

www.manaraa.com

xvi

Introduction

answer to the question "What happens if the key is lost?" should be exactly the
same as the answer they'd give if asked the question "What happens if data is
corrupted or lost due to a disk failure": I will restore it from backup. Failure to
do so in either case may result in a new DBA job posting.

I'm hoping, with this book to address some of the concerns and confusion
surrounding encryption, and other data protection methods. I hope to hear the
question "What happens if I do not encrypt my sensitive data?" occur more
often in my conversations regarding data security. I hope to see the fear of the
"lost key" displaced by fear of data loss due to unauthorized disclosure, which
will not only result in the leakage of sensitive data but also exposure to the data
being fraudulently modified. Encryption is one of the most valuable weapons
with which that battle can be won.

What this Book covers

The topics covered in this book will introduce the basic concepts of sensitive
data and offer some solutions that focus on the data itself. This includes:

•	 Defining sensitive data: Clearly understanding the characteristics that
define sensitive data is the first step in the journey toward protecting it.
This topic will cover the legal definitions of sensitive data and provide
several real-world examples of data that fit this category.

•	 Data classification: Born from the understanding of sensitive data is
the process of identifying the columns within the tables of our database
that contain it. It is through this process that data is classified so that the
appropriate security methods can be applied.

•	 Database schema considerations: The design of a database's tables,
columns and their relationship to each other is a key step in the process
of developing a database. There are many things to consider when
approaching this design; one of which is effectiveness and efficiency of
storing sensitive data.

•	 Encryption: Once sensitive data is identified and appropriately stored
it is ready to be protected. Cryptography is one method in which the
plain text that is submitted to the database is transformed into a series
of values that is unrecognizable to readers who do not have the key to
decrypt it.

www.manaraa.com

xvii

Introduction

•	 Other obfuscation methods: Encryption is not the only way to hide
data from prying eyes. There are other methods that can be used when
the use of cryptography is too strong or inefficient. This topic will ex-
plore these options as well as ways to identify when someone is snoop-
ing around in search of unprotected data.

While the topics such as defining sensitive data and data classification can
be applied to any database platform, all database specific features presented
are within the context of Microsoft SQL Server 2005 and Microsoft SQL
Server 2008.

The release of SQL Server 2005 introduced features, such as cell-level
encryption, that were focused on protecting sensitive data. SQL Server 2008
continued that trend with features such as Transparent Data Encryption, the
ability to audit more fully data manipulation language (DML) and other
activities within the database.

It is my hope that you find this book very useful in your efforts to protect the
valuable assets that are contained within your database.

Code Download

Throughout this book are code samples that use a sample HomeLending
database for illustrative purposes. The specific details regarding the design
of the sample database can be found in the "Introducing the HomeLending
Database" section of Chapter 2.

To download the entire HomeLending database and all code samples
presented in this book, visit the following URL:

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

Details regarding the download, creation and execution of the code samples
can be found in Appendix B of this book, as well as being documented with the
downloaded code samples.

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

www.manaraa.com

xviii

Introduction

Feedback

I have always found a book to be more valuable when discussion surrounds
its reading. It is even more beneficial when the author is available for
correspondence. If you have any questions or feedback in regard to this book
or the scripts that were provided, please contact me at encryptionphobia@live.
com.

mailto:encryptionphobia%40live.com?subject=
mailto:encryptionphobia%40live.com?subject=

www.manaraa.com

19

Chapter 1: Understanding
Sensitive Data

Data is a form of currency. As members of society, we provide information
about ourselves to gain access to services and goods that we desire. We collect
information about others in order to market our services and obtain verification
of identity. As Database Professionals it is our lifeblood. We labor daily to
store, backup, transfer, transform, share, report, analyze and protect data.
Ultimately, our primary concern is protection of the data's integrity, availability
and confidentiality.

In order to effectively protect our sensitive data, it is critical that we understand
the characteristics that define that data as being sensitive. In this chapter,
we will explore the characteristics that make data sensitive, present specific
examples of sensitive data and discuss some of the weapons available to the
Database Administrators that are employed to protect it.

What Makes Data Sensitive?

Subjectively, sensitive data can be defined simply as information that the holder
does not wish to share publicly. A wild array of information could fall into
this category, depending upon the motivation of the holder at any given time.
This could include the refusal to supply their phone number, birth date, or their
adoration of a not-so-popular celebrity.

Objectively, there are laws, regulations and industry standards that provide a
solid framework for defining sensitive data. A few examples of these are the
United Kingdom's Data Protection Act of 1998, Canada's Personal Information
Protection and Electronic Information Act and the United States Department of
Health and Human Services' Privacy Rule of the Health Insurance Portability
and Accountability Act.

www.manaraa.com

20

Chapter 1: Understanding Sensitive Data

Personal, Identifiable and Sensitive Data

The terminology used when referring to the protection of information can
be confusing. Gaining an understanding of the subtleties of these terms will
provide the clarity needed to identify the sensitivity of our data.

The three most common terms used to describe this information are:

•	 Personal data

•	 Identifiable data

•	 Sensitive data.

Personal Data

The term "personal data" is very broad in scope. It can apply to any data that
pertains to an individual, and does not necessarily reflect its level of sensitivity.
Examples of personal data are an individual's hair color, musical preferences,
criminal history, cell phone number, and the high school they attended.

According to the United Kingdom's Data Protection Act of 1998, personal data
is defined as:

"... data which relates to a living individual who can be identified – a) from
those data, or b) from those data and other information which is in the
possession of, or is likely to come in the possession of, the data controller."

Depending upon the definitions that are used in the regulations, standards and
policies that are being considered, data that may otherwise be considered a low
sensitivity risk could be escalated.

Identifiable Data

Identifiable data is a more specific term than personal data. It applies
specifically to information that uniquely defines an individual. For example, my
personal data may indicate that I am a fan of the Beatles; but there are millions
of other people who share that interest. My federal identification number,
however, is assigned only to me and through this unique number my identity
can be verified.

www.manaraa.com

21

Chapter 1: Understanding Sensitive Data

In a memorandum to the Executive Departments and Agencies of the United
States Federal Government, from the White House, the definition of identifiable
data is:

"... Information which can be used to distinguish or trace an individual's
identity, such as their name, social security number, biometric records, etc.
Alone, or when combined with other personal or identifying information
which is linked or linkable to a specific individual such as date and place of
birth, mother's maiden name, etc."

Data that is defined as identifiable requires an elevated effort in regard to its
protection, and the prevention of improper disclosure.

Sensitive Data

Sensitive data is a term that includes identifiable data, but also extends to
information that may be considered private, or to have societal and economic
consequences if improperly disclosed. It is also information that could cause
harm to an organization if it is improperly disclosed. This type of data includes
political opinions, religious beliefs, mental or physical condition, criminal
record, financial status, intellectual property, organizational membership, codes
and passwords that grant access to accounts, and information of national security.

According to the United Kingdom's Data Protection Act of 1998, Sensitive data
is defined as:

"... personal data consisting of information as to – a) the racial or ethnic
origin of the data subject, b) his political opinions, c) his religious beliefs
or other beliefs of a similar nature, d) whether he is a member of a trade
union ..., e) his physical or mental health or condition, f) his sexual life,
g) the commission or alleged commission by him of any offence, or h) any
proceedings for any offence committed or alleged to have been committed
by him, the disposal of such proceedings or the sentence of any court in
such proceeding."

In the definition provided by the Data Protection Act, it is specific to
information of an individual; but sensitive data spans beyond the scope of
the individual and includes businesses, organizations and nations. Data that
is considered sensitive will always require additional efforts to protect it and
prevent unauthorized disclosure.

www.manaraa.com

22

Chapter 1: Understanding Sensitive Data

Implications of Data Theft

Other motivating factors in determining data sensitivity include the propensity
of being subject to identity theft, plus consideration of individual privacy, and
of national security.

Identity Theft

Identity theft is the process of obtaining a person's identity for the purpose of
committing fraudulent activities. In 1998, the United States Congress passed
the Identity Theft and Assumption Deterrence Act, which made identity theft a
federal felony. The United States Federal Trade Commission reported that, in
the year 2007, over 1.2 billion dollars were lost as the result of identity theft
and related fraudulent activities.

The crime of stealing a person's identity can begin with the disclosure of data
as seemingly as innocent as a person's name and birth date. This information
may be all that is needed to identify one John Smith from the million other
John Smiths. With that information in hand, other identifying data could be
obtained through research, hacking and social engineering efforts. Ultimately,
the "hacker" may use this information to obtain fraudulent forms of identity
verification, such as a passport, credit card, or driver's license.

Terrorists, illegal immigrants, and criminals often deflect suspicion by
assuming the identity of unsuspecting law abiding citizens. It is through the
protection of sensitive data that the efforts of the identity thief are confounded.
The livelihood of the person that is the subject of the sensitive data is often
dependent upon the methods employed to secure sensitive data in the database.

Privacy

One of the cornerstones of a free society is the freedom of an individual to
reveal or withhold personal information in a selective manner. It is through this
selective disclosure that we protect ourselves from false accusations from other
persons or governmental entities. This Privacy also allows freedom of speech
and individual thought to prevail.

Without this protection, any action that a person takes, and every statement that
a person makes, can easily be taken out of context and used to damage their
reputation, or potentially threaten their freedom.

www.manaraa.com

23

Chapter 1: Understanding Sensitive Data

In October 1998 the European Commission issued the Directive on Data
Protection that restricted the sharing of personal data with countries that
do not comply with their standard for privacy protection. Later, the United
States Department of Commerce and the European Commission formed the
Safe Harbor Network to aid organizations in attaining compliance of privacy
policies.

Data that is considered private is not limited to identifiable data but also
electronic communications, documents, memos, medical histories, performance
reviews, purchasing history and other similar data that is stored in a database.
The protection, access and retention of this sensitive data are critical elements
of the Database Administrator's responsibilities.

National Security

Some of the most sensitive information concerns national security. Disclosure
of such information to the wrong people can threaten a country's stability, or
possibly even its continued existence. Military information is typically the
first type of data that is protected on grounds of national security. Other data in
this realm may include trade agreement details, scientific discoveries that have
global consequences if disclosed improperly, and the schedules of key figures
of the government.

During World War II, the popular slogan of "Loose lips sink ships" reminded
citizens that sharing even seemingly harmless information could have dire
consequences to the troops that were fighting in the war. The information
provided in the letters sent to the troops from home could have fallen into
enemy hands and been used against the allied forces' efforts on the frontline.
What was true of wartime letters is also true for sensitive data that is stored in
databases.

If you are a DBA within the military or government, or a civilian business
that handles data from the military or government, you need to have a clear
understanding of the data handling policies that have been established by the
military or government agency in order to protect this special form of sensitive
data.

www.manaraa.com

24

Chapter 1: Understanding Sensitive Data

Compliance with Regulations

Federal, State and local governments establish laws and guidelines that pertain
to sensitive data. Some of these laws are industry specific, such as the United
State's Financial Privacy Act of 1978, which pertains to data that is specific to
financial records and account information of a financial institution's customers.
Others are broader in their scope, such as the United Kingdom's Data Protection
Act of 1998, which pertains to any entity that obtains, stores and discloses
sensitive data.

Compliance of laws and regulations are monitored through regulatory agencies
and audits. The consequences of non-compliance range from denial of a benefit,
to the levying of significant fines and, in some situations, prison terms.

In addition to governmental regulations are standards that are defined by
industries. These industries enforce compliance with these standards in the
provisions and to utilization of their services. Many of these laws, regulations
and standards define how sensitive data is to be stored and disclosed.

An example of such a standard is the one developed by the major credit card
companies, called the Payment Card Industry Data Security Standard (PCI
DSS). Requirement 3 of the PCI DSS designates the card holder's name, the
primary account number, expiration date, service code and the authentication
data as being sensitive data and defines how this information is to be stored
and protected. The PCI DSS specifically states that encryption, hashing or
truncation is to be utilized for storage of the primary account number.
Violation of the standard results in significant fines and the restriction of credit
card processing.

As a DBA, an understanding of these requirements is critical to the
compliance efforts of your organization. In many cases it is only the DBA who
has the level of knowledge that is required to recognize what is involved in
meeting these specifications.

Types of Sensitive Data

The following sections provide some specific examples of data that is generally
considered sensitive by laws, regulations or industry standards.

www.manaraa.com

25

Chapter 1: Understanding Sensitive Data

Government Assigned Identification

Throughout the world, individuals and businesses are provided with various
identification numbers, by their respective governments. This data is important
to governments for validation of citizenship, work status, taxation, claiming of
benefits, general identification and licensing. The following are a few examples
of identification numbers that are assigned by governments around the world:

•	 Driver's License Number

•	 Passport Data

•	 Social Security Number (USA)

•	 Employer Identification Number (USA)

•	 Individual Taxpayer Identification Number (USA)

•	 Preparer Taxpayer Identification Number (USA)

•	 Permanent Resident Alien Number (USA)

•	 Value Added Tax Identification Number (EU)

•	 Unique Tax Payer Reference (UK)

•	 National Insurance Number (UK)

•	 Company Tax Reference (UK)

•	 General Index Reference Number (India)

•	 Permanent Account Number (India)

•	 Tax File Number (Australia).

All of these pieces of data are to be considered sensitive. When a given
identification number is used widely, beyond its original intended purpose, the
potential damage from unauthorized disclosure increases.

For example, consider the Social Security Number, first introduced in the
United States by President Franklin Roosevelt in 1935. Its initial intent was to
identify a tax payer who was paying the Social Security Tax. Attached to this
tax are various benefits such as retirement and disability benefits. However,
over the decades this number became much more widely used as a way for
organizations, businesses, hospitals and educational institutions to uniquely
identify a US Citizen.

www.manaraa.com

26

Chapter 1: Understanding Sensitive Data

Due to this extended usage, the unauthorized disclosure of the Social Security
Number opens up a Pandora’s Box of possibilities for fraudsters. The Social
Security Number is associated with credit reports, financial records, medical
history, criminal history, tax records, passports, birth certificates, public
records, voter registration, professional licenses and many other items that are
used to validate identity.

Laws have been enacted over the years at the Federal level, such as the United
States' Gramm-Leach-Bliley Act, and at the state level, such as Indiana Code
§ 9-24-6-2, in an effort to curtail use of the Social Security Number beyond its
intended purpose. However, there remain many legacy systems that utilize the
Social Security Number to uniquely identify a customer's record.

As a DBA, keep an eye out for the use of any government assigned
identification as the primary key, or as a unique identifier, for an individual or
business. Strongly discourage the use of sensitive data for this purpose. It is far
preferable to use a system-generated value that does not have meaning beyond
the database, such as using an auto-numbering column or a GUID (globally
unique identifier), to define the primary key for a customer.

Biometric Data

Upon and within ourselves we contain data that can be used as a form of
identity verification. This information is called biometric data. Persons
who have been severely burned are often identified through the use of dental
records. When data such as the number of teeth, their placement within the
mouth, the various types of dental work that have been performed on them, is
properly documented, it can be used to positively determine our identity.

There are many ways to categorize the different types of biometric data but,
in a nutshell, it can be lumped into two primary types: physiological and
behavioral.

Physiological biometrics is the information that pertains directly to our bodies.
These are the measurements of the tiny, and not-so tiny, features that make
us unique in this world of over six billion people. Below are a few specific
examples:

•	 Fingerprints

•	 Finger or hand geometry

www.manaraa.com

27

Chapter 1: Understanding Sensitive Data

•	 Facial geometry

•	 Iris or retina patterns

•	 Ear geometry

•	 Dental geometry

•	 DNA.

Behavioral biometrics is the information that pertains to the uniqueness of
our physical motions. This type of biometric data is used in voice recognition
software. Banks have been using signature cards for many years to verify
whether a check or withdrawal slip is fraudulent. Below are a few specific
examples of behavioral biometrics:

•	 Signature

•	 Typing patterns

•	 Voice patterns

•	 Stride, or walking patterns.

Biometric data is permanent and, correctly or otherwise, is regarded as nearly
irrefutable evidence of a person's identity. As such, this type of data should be
considered sensitive.

The Biometric Institute in Australia has established an industry standard called
the "Biometric Institute Privacy Code" in response to the Australian Privacy
Act of 1988. This code presents guidelines for access control, protection in
storage and disposal of biometric data. As a DBA, these aspects of biometric
data demand careful attention.

Medical Data and History

Each visit to the doctor, dentist, hospital or specialist generates data about
our physical and mental condition. Also, when an invoice is generated for the
services rendered, and we make payment, there are records created that present
a historical record of our payment activity. This data is considered sensitive.

Disclosing this information to the general public presents opportunities for
denial of insurance coverage, denial of employment, denial of residence, denial
of access to public facilities and, in some cases, social scrutiny and ridicule.

www.manaraa.com

28

Chapter 1: Understanding Sensitive Data

According to the United States Department of Health and Human Services'
Privacy Rule of the Health Insurance Portability and Accountability Act
(HIPAA) the data that is considered protected within this rule are:

•	 Information that identifies an individual

•	 An individual's medical condition

•	 An individual's health care history

•	 An individual's history of payment for health care.

In the United Kingdom Act of Parliament titled the Data Protection Act of
1998 the protection of sensitive personal data includes the condition of an
individual's mental or physical health.

Access control is a critical aspect of maintaining this type of data in a database.
Many times this data is requested by researchers. For their purposes access
to aggregated data is sufficient. This aggregated data should not include
identifiable or other sensitive data.

Student Education Data

Students have a unique set of data that is considered sensitive, beyond the
standard identifiable data, such as federal tax identification number, name,
address and birth date.

In the United States, any educational agency or institution that receives Federal
Funding by the United States Department of Education is subject to the Federal
Educational Rights and Privacy Act (FERPA). This law is designed to protect
the privacy of students.

In this act, a school must seek permission from the student to disclose their
academic data to another party. This data includes:

•	 Student's grade history

•	 Focus of study

•	 Attendance of official school events

•	 Personal information such as government assigned
identification and address information

•	 Disability records.

www.manaraa.com

29

Chapter 1: Understanding Sensitive Data

In addition to FERPA, there is the Children's Online Privacy Protection Act
of 1998 which is designed to prevent identifiable information about children,
under the age of thirteen, from being published on a website or an online
service, such as e-mail, message board or chat room. This information includes:

•	 First and last name

•	 Home address

•	 Email address

•	 Telephone number

•	 Social Security Number

•	 Identifiers used in data collection efforts.

While the Children's Online Privacy Protection Act is not specific to
educational records, many student activities include children under the age of
thirteen; therefore this regulation often coincides with FERPA.

As in many cases when dealing with data that is regulated, strict control of
access to data is vital in its protection. Careful consideration as to how this data
is disclosed, whether it be on a report or presented on a screen, is an important
role of the DBA.

Employment Records

The Human Resources department of any given business contains a myriad of
sensitive information on each of their employees. In this environment, there are
many internal policies and regulations to which one must adhere to protect this
data from those who seek its disclosure.

The United States Department of Health and Human Services' Privacy Rule of
the Health Insurance Portability and Accountability Act (HIPAA) is an example
of one of the regulations that also applies to employee data. In addition to
HIPAA, there are many other privacy regulations that affect, and define, the
sensitivity of employment data. Some are at the federal level, such as the
United State's Federal Privacy Act of 1974, and some at the state level, such as
the California Information Practices Act, as well as various internal corporate
policies that are specific to a given business.

www.manaraa.com

30

Chapter 1: Understanding Sensitive Data

The following are a few examples of data that is considered sensitive when
considering information regarding employees and their jobs:

•	 Salary details and history

•	 Insurance benefits and beneficiary information

•	 Direct deposit account information

•	 Job description details

•	 Background check results

•	 Reference validation

•	 Exit interviews.

This data should not only be controlled in its disclosure to persons both outside
and inside the company. IT Professionals that are supporting the systems of the
Human Resources Department should not have access to plain text information
regarding their fellow employees. The temptation to run a query to compare
their salaries to their co-workers is great and is an abuse of their role.

As the gatekeeper of this information, the DBA should consider obfuscation
methods, discussed later in this book, to make this data unavailable to those
who need to maintain the systems that contain this data.

Communication Data

The fourth amendment to the United States Constitution states:

"The right of the people to be secure in their persons, houses, papers, and
effects, against unreasonable searches and seizures, shall not be violated,
and no Warrants shall issue, but upon probable cause, supported by Oath
or affirmation, and particularly describing the place to be searched, and
the persons or things to be seized."

It is in support of this amendment that the Stored Communications Act (SCA)
was developed, which protects stored electronic communication data from
unauthorized access and destruction by the government, businesses or other
entities.

In 2002, The Council of the European Union passed directive 2002/58/EC
which specifically states in regard to the storage of electronic communications:

www.manaraa.com

31

Chapter 1: Understanding Sensitive Data

"… Measures should be taken to prevent unauthorised access to
communications in order to protect the confidentiality of communications,
including both the contents and any data related to such communications,
by means of public communications networks and publicly available
electronic communications services ... The prohibition of storage of
communications and the related traffic data by persons other than the
users or without their consent is not intended to prohibit any automatic,
intermediate and transient storage of this information in so far as this
takes place for the sole purpose of carrying out the transmission in the
electronic communications network and provided that the information is
not stored for any period longer than is necessary for the transmission and
for traffic management purposes, and that during the period of storage the
confidentiality remains guaranteed ..."

Data that is stored in a database, file system, or within an application that
consists of communications between parties, should be protected carefully.
Within these communications could reside other personal, identifiable and
sensitive data, or dialog that could be misconstrued or used against the parties
involved in the court of law.

In some cases, as in the directive 2002/58/EC, there are some communications
that are restricted from being stored beyond their transmission. Other federal
and state regulations, such as The United States' Sarbanes-Oxley Act of 2002
(SOX), define data retention periods that must be followed; therefore, the
consideration of whether to capture or to permit the deletion and modification
of communication data is important for the DBA.

Financial Data

In the United States, the Right to Financial Privacy Act of 1978 prevents
financial institutions from disclosing financial records to government
authorities without a warrant, subpoena or customer authorization. In this law
the definition of a financial record is:

"... original of, a copy of, or information known to have been derived
from, any record held by a financial institution pertaining to a customer's
relationship with the financial institution."

www.manaraa.com

32

Chapter 1: Understanding Sensitive Data

This regulation requires strict access controls on financial data, and on the
customer's personal and identifiable data. There are also aspects of this
regulation that define how disclosure of this information can be gained through
warrants, judgments and court orders.

The Gramm-Leach-Bliley Act (GLBA), which was enacted by the United
States Congress in 1999, defines various steps that are required by financial
institutions to ensure the security of their customers’ non-public data. These
steps include limitations of the use of this data, and establishing policies that
provide protection from social engineering efforts. The GLBA's definition of
non-public is:

"... personally identifiable financial information – (i) provided by a
consumer to a financial institution; (ii) resulting from any transaction with
the consumer or any service performed for the consumer; or (iii) otherwise
obtained by the financial institution ..."

Among the requirements of this regulation is the ability for a customer to opt
out of the sharing of information with third parties that are unaffiliated with
the financial institution. Also, the development of processes to monitor and test
security measures implemented.

The Payment Card Industry Data Security Standard (PCI DSS) is not
a regulation of law, but a set of standards that have been defined by
representatives from American Express, Discover Financial Services, Master
Card, Visa and JCB International. The businesses and organizations that accept
and transmit credit card transactions are subject to these standards.

Within these standards the following data is considered sensitive:

•	 Card holder's name

•	 Expiration date

•	 Service code

•	 Primary account number (PAN)

•	 Validation codes

•	 Personal identification number (PIN).

According to the PCI Data Security Standards (PCI DSS) a portion of this
sensitive data, specifically the PAN, is explicitly required to be encrypted,
hashed or truncated if stored. Other data such as the PIN, and the entirety of

www.manaraa.com

33

Chapter 1: Understanding Sensitive Data

the contents of the magnetic strip upon the credit card, are not permitted to be
stored beyond the duration of the transaction.

Trade Secrets

Trade secrets are an important aspect of corporate competition. It may be the
quality, or design, of a product that gives it an edge over similar products in the
market. The formula for the syrup used in Coca-Cola is a trade secret. Due to
this unique formula it has a distinct flavor which is different than Pepsi Cola or
RC Cola. Depending upon your taste preferences, it is this trade secret that may
draw you to purchase Coca-Cola over the other brands, and develops consumer
loyalty.

In the United States, there is a law called the "Uniform Trade Secrets Act"
(UTSA), designed to provide some uniformity to the definition of a trade
secret, as well as provide some guidelines around what constitutes the
misappropriation of trade secrets. This law defines a trade secret as:

"... information, including a formula, pattern, compilation, program device,
method, technique, or process, that: (i) derives independent economic
value, actual or potential, from not being generally known to, and not being
readily ascertainable by proper means by, other persons who can obtain
economic value from its disclosure or use, and (ii) is the subject of efforts
that are reasonable under the circumstances to maintain its secrecy."

In addition to the UTSA law there is the Economic Espionage Act of 1996 that
makes the disclosure of trade secrets to unauthorized parties a federal crime:

"… Whoever, with intent to convert a trade secret, that is related to or
included in a product that is produced for or placed in interstate or foreign
commerce, to the economic benefit of anyone other than the owner thereof,
and intending or knowing that the offense will, injure any owner of that
trade secret, knowingly -- (1) steals, or without authorization appropriates,
takes, carries away, or conceals, or by fraud, artifice, or deception obtains
such information; (2) without authorization copies, duplicates, sketches,
draws, photographs, downloads, uploads, alters, destroys, photocopies,
replicates, transmits, delivers, sends, mails, communicates, or conveys such
information; (3) receives, buys, or possesses such information, knowing the
same to have been stolen or appropriated, obtained, or converted without
authorization; …"

www.manaraa.com

34

Chapter 1: Understanding Sensitive Data

Laws regarding trade secrets are often focused on the disclosure of information
rather than the storage of it; but the control of disclosure begins with protecting
the stored data. As with any sensitive data the access controls to the data are
highly critical in any protection efforts. Granting access to only those users
who need access to the sensitive data, on an as needed basis, is a good practice.
Careful consideration of how data is presented when including trade secret
information on reports or spreadsheets that are drawn from databases is also an
important aspect.

Group Dynamics of Sensitive Data

A standard wooden spoon that sits within the kitchen drawer is rather harmless
and holds no special intrigue. A two liter bottle of cola offers little more
excitement beyond its momentary burst of enthusiasm when first opened; but
when the harmless wooden spoon is dipped into the boring two liter bottle of
cola it is bedlam! A tall column of caramel liquid rushes towards the sky and
drapes its stickiness over everything within its range.

A similar effect can be achieved with data. As a single piece of data, your date
of birth is just one of the 365 days that are on everyone's calendar. However,
given added context, such as your name, the date of birth becomes data that
is highly valuable to someone who is attempting to steal your identity. From
this small start, an identity thief can discover additional information that can
be used to make their exposure of your sensitive data complete. Add your
mother's maiden name, along with place of birth, and a certified copy of a
birth certificate could be obtained which can result in the acquiring of valid
passports, driver's licenses and Social Security cards.

The PCI DSS recognizes this dynamic when it states that the cardholder's name,
service code and expiration date are required to be protected when it is stored
in conjunction with the primary account number (PAN). Otherwise employing
protection methods for the cardholder's name, service code and expiration date
are optional for compliance with PCI DSS.

When reviewing a database for the consideration of applying protection
methods, and implementing access controls, keep this dynamic in mind.
Additional protection, abstraction and obfuscation methods may be required
even if the columns involved have been assigned a low or medium sensitivity
class. Some solutions for reducing the sensitive group dynamic might include:

www.manaraa.com

35

Chapter 1: Understanding Sensitive Data

•	 Careful consideration of the data that is being captured in the
database. For example, it is not uncommon to capture the full name of
an individual in a database. However, there may be times when the last
name, or initials, are all that are required for the purpose of the system.

•	 Capturing only a portion of personal data. For example, storing
only the birth year portion of a birth date. Another option might be
to capture the birth date in an obscure format such as Julian date. For
example, the date of 06/03/2009 00:00:00.000 is the Julian date of
2454985.50000.

•	 Applying a one-way hash to personal information such as mother's
maiden name. By doing so the value will never be readable in plain text
and yet the ability to compare an entered value remains. This will be
covered in more detail in Chapter 7 of this book.

Data at Rest and Data in Transit

Data at rest refers to data that is stored, archived or residing on backup
media. Data in transit refers to data that is traversing a network, or residing in
memory. Both states of data have their security concerns and methods of threat
mitigation.

The PCI DSS is a good example of an industry standard that presents the
requirements of securing sensitive data differently for data at rest and data in
transit. Requirement 3 of the PCI DSS focuses on data storage, access control,
and readability of sensitive data while in storage, as well as encryption key
management. These techniques are focused on data at rest. Requirement 4 of
the PCI DSS focuses on the use of security protocols, wireless networks and
encryption, which are focused on data in transit.

When considering protection methods, keep in mind that many methods that
are designed to protect data at rest are not necessarily sufficient for data in
transit. For example, SQL Server 2008 offers a feature called Transparent
Data Encryption (TDE). This feature encrypts the physical files of a database,
its transaction logs and back up files. When data that is encrypted with TDE
is queried it is decrypted and stored in the memory cache as plain text. There
are critics of this feature who may view this as a flaw in its design; but when
you consider that the scope of this feature was to fulfill the requirements of
protecting data at rest, and not data in transit, you realize that this feature
is extremely effective, and is not intended to be the silver bullet for all data

www.manaraa.com

36

Chapter 1: Understanding Sensitive Data

security concerns. More details in regard to the Transparent Data Encryption
feature of SQL Server 2008 will be covered in Chapter 6 of this book.

The methods of protecting sensitive data that are presented in this book are
primarily focused on the protection of data at rest. In doing so, it is not to
suggest that the protection of sensitive data in transit is less of a concern when
managing your data security strategies. The DBA should be aware of the
threats to sensitive data in both states, when preparing solutions for those who
consume the data they manage. Typically the strategies of protecting data in
transit fall upon the shoulders of the Network Administrator who manages the
physical servers and network connections. The protection of data at rest is often
in the realm of the DBA who architects database schemas, performs backups
and manages access to the databases. Therefore, it is valuable to present
solutions to the challenges that are unique to the DBA.

Shields and Swords

It is not an exaggeration to say that we, as DBAs, are at war with data
thieves. In our possession are assets that are valuable. The hackers, phishers,
rumor mongers and identity thieves all want to possess these assets. They
employ every weapon and strategy that is available to them, including social
engineering, brute force attacks on databases, dumpster diving, burglary,
interception of mail, network sniffing, and so on, to succeed in their efforts.

Defending data is a "war", and a war cannot be won by employing only a
single weapon. As DBAs, we have many weapons and strategies available to
us to protect our sensitive data, each of which will be covered in more detail
throughout this book.

Data Classification

The beginning of data protection is the knowledge of the data that we keep. If
we are unaware that we hold sensitive data in our database we will not make the
effort to secure it. The process of data classification is our path to enlightenment.

Through data classification we categorize each column within our database
according to its level of sensitivity. Based upon these categories, protection
methods can be consistently applied and managed.

www.manaraa.com

37

Chapter 1: Understanding Sensitive Data

Schema Architecture

Strategic storage of data and the abstraction of the underlying organization
of the database provide a way to reduce the risk of full disclosure of sensitive
data. Increasing the amount of knowledge and persistence required to disclose
sensitive data outside of the established methods reduces the players involved
on the battlefield.

Normalization offers an efficient way of storing data within a relational
database. For the benefit of securing sensitive data normalization offers the
separation of sensitive data from data that is considered less sensitive. This
separation increases the level of disclosure that has to occur to make the
sensitive data useful to the data thief.

SQL Server offers a linked servers feature which presents the opportunity to
expand the benefits of normalization across multiple physical servers; thus
increasing the requirements to gain access to the sensitive data that is stored in
the separate database server.

Views and database object schemas are features of the database that offer layers
of abstraction of the underlying schema of the database which provide a way to
protect sensitive data and more effectively manage access to it.

Obfuscation

Rendering data unreadable or incomplete for the benefit of hiding its true
contents is known as obfuscation. Cryptography is also a common term used to
reference this practice.

Encryption is a popular method of obfuscation. Through this method an
algorithm is used to render the data unreadable. To return the data to its
readable format requires a key that is available to a select few individuals.

Hashing, which is also known as one-way encryption, is another weapon
available to the Database Administrator. Like encryption, this process uses an
algorithm to render the data unreadable; but once the data is encrypted it cannot
be returned to its readable format. The disclosure of the readable value is
obtained by comparing hashed values of the data and entered value.

www.manaraa.com

38

Chapter 1: Understanding Sensitive Data

Truncation, masking and encoding are also methods of obfuscation that reduce
the readability of the sensitive data therefore reducing its risk and value when
disclosed. These methods of obfuscation are often the last line in the defense
of sensitive data. If there is a breach in security that allows an unauthorized
individual to gain access to the data, these methods will render that data
unusable.

Monitoring

The battle of securing sensitive data is a continuous one. The adversaries of our
security efforts are persistent. Without the effort of maintaining or improving
our protection methods they will become circumvented and our sensitive data
will be exposed. The process of monitoring the activities that occur in our
databases is a way to measure the effectiveness of our protection methods and
identify when it is time to improve them.

SQL Server 2008 offers a new auditing feature that provides a means of
monitoring a wide variety of actions that occur within the database. The
notification of specific events though the Database Mail feature provides a way
for the Database Administrator to react to occurrences as they happen.

Honeycombing a database offers a tactic of placing decoy tables within the
database schema that give the appearance of unprotected sensitive data. By
applying an audit on these decoy tables the Database Administrator can be
immediately notified of a user that is snooping around for sensitive data.

Summary

An understanding of the data that has been entrusted to your business, and
the methods available to protect it, is fundamental to the effectiveness of your
security strategy. With this understanding we can turn our attention to the
classification of the data and the mechanism in which this data is stored: the
database.

www.manaraa.com

39

Chapter 2: Data Classification
and Roles

The systematic arrangement of items, based upon their similarity, is a natural
tendency of humans. We categorize living beings into classes, establish
genres of entertainment, define nationalities of people, specify types of food
and designate criteria of celestial objects. This practice is referred to as
classification.

The process of classification of sensitive data is that of identifying patterns and
similarities between different types of data so that we can define a common
approach to securing it. Having classified our data, we will be able to apply the
appropriate level of security to it, and communicate the policies that determine
how the data will be handled by its users.

In this chapter, using an example HomeLending database, we will:

•	 Define some simple "sensitivity classes" that can be used to group
columns of data according to their level of sensitivity.

•	 Create Database Roles through which we can control access to each
class of data.

•	 Assign membership of each role.

•	 Use SQL Server extended properties to assign a sensitivity class to
each database column.

Finally, we'll discuss how this simple classification might be extended for
more specific requirements, and how we define and allocate the data handling
policies appropriate for each class of data.

Introducing the HomeLending Database

Before we begin in earnest, it will be useful to review a few details regarding
our sample HomeLending database which will be used to illustrate the topics
in this book. This will be a simplified version of a database that might be
used by a financial institution for the purpose of managing the home equity

www.manaraa.com

40

Chapter 2: Data Classification and Roles

and mortgage loan application process. A copy of the script that will create
this database in your own instance of SQL Server can be obtained from the
following URL:

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

The following illustration shows the database schema for the HomeLending
database. This schema is based upon the Uniform Residential Loan Application,
or commonly referenced as the Fannie Mae 1003 form, which is used for loan
applications in the United States.

Figure 2-1: Sample HomeLending Schema.

The aforementioned database creation script will create tables that are not
presented in Figure 2-1. The relationships represented in this schema are
specific to the tables that are referenced in this book.

Once the database creation script is executed you can use a data generator tool,
such as Red Gate's SQL Data Generator to populate the tables with artificial test
data.

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

www.manaraa.com

41

Chapter 2: Data Classification and Roles

Defining Classes of Sensitivity

Our main goal in this study, when considering data classification, is to identify
and specify the sensitivity of our data. For example, is it data that is freely and
publicly available, or for internal use only, or is it classified information that
only certain personnel should be allowed to access?

While here we will restrict ourselves to classification based on data sensitivity
only, it's worth noting that such a data classification process will often
incorporate further information regarding the management of sensitive data.
For example, data classification can be used to manage the data in respect to
data retention policies. Among the many regulations that were noted in the
prior chapter there are some, such as the United States Department of Health
and Human Services' "Health Insurance Portability and Accountability Act"
(HIPAA), which defines how long sensitive data is to be retained in addition to
identifying its sensitivity.

Disaster recovery planning is another area in which data classification can be
useful. In the event of a disaster, the ideal situation is the total recovery of all
systems, in a very short timeframe. However, depending upon the nature of the
disaster, this is not always possible and so a prioritization of system recovery
must be defined. So, for example, the data classification system may assign
the following priorities to the various data elements in regard to the urgency of
their recovery:

•	 Mission-Critical – a system that must be recovered immediately.

•	 Intermediate – a system that is important, but not critical for the basic
functioning of the business.

•	 Low – a subsidiary system that is either disposable, such as a
temporary database use to massage data for a special report, or one
where limited data loss may be acceptable to the business requiring a
less frequent backup schedule.

www.manaraa.com

42

Chapter 2: Data Classification and Roles

Data Classification Based on Data Sensitivity

As noted, we'll base our data classification purely on the different levels
of sensitivity of the data in our sample database. When defining any data
classification system, the definitions of each class must be based upon objective
properties that are easily recognizable. The definitions of these classes will
reflect the criteria that data must meet in order to be classified to that level. In
addition, the definition should include, in general terms, examples of the roles
that should have access to data in that class. Clear criteria should be provided
that will allow the security analyst to unambiguously recognize the class
that should be assigned to an element of data. It may be tempting to suggest
methods of mitigating risk with the class descriptions, such as "all data in this
class must be encrypted", but this should be reserved for the development of
data handling policies which occurs immediately following the creation and
assignment of sensitivity classes.

A key aspect to the success of a data classification system, regardless of its
purpose, is simplicity. The creation of too many classes will result in a system
that is difficult to manage and enforce. In our sample HomeLending database,
a simplified scale of sensitivity classes, each presenting a progressive level of
severity, will be implemented. The following are the descriptions of our sample
class definitions:

•	 Low Sensitivity (General Public)
Information that is publicly available through other civil sources, or
that has been specifically designated as public information by
regulation or corporate policy.

•	 Medium Sensitivity (Internal Disclosure Only)
Information that would cause minor damage to the organization or
subject if disclosed externally from the organization. The damage
referenced in this description includes exposure to litigation,
compromise to security of assets, reputation of organization and its
associates, elimination of competitive advantage, and violation of
regulation, industry standard or corporate policy. This damage potential
will be determined in conjunction with corporate legal counsel. If the
class is undeterminable, this is considered the default class.

•	 High Sensitivity (Restricted to Specific Personnel)
Information that would cause major damage to the organization or
subject if disclosed externally from the organization. The damage

www.manaraa.com

43

Chapter 2: Data Classification and Roles

referenced in this description includes exposure to litigation, compro-
mise to security of assets, reputation of organization and its associates,
elimination of competitive advantage, and violation of regulation,
industry standard or corporate policy. This damage potential will be
determined in conjunction with corporate legal counsel. This class
includes information that is designated explicitly as sensitive or
identifiable through regulation, industry standard or corporate policy.

Notice that each class clearly establishes the authorities on which the
classification is based. In this case, the classification is based on regulations
that are provided by the government, the establishment of industry standards by
associated organizations and the internal policies that are established within the
company. This provides the analyst with the resources and objectivity needed to
implement the classification.

The fact that we have defined the "Medium" sensitivity class as the default,
rather than "Low" or "High", instructs the security analyst that the disclosure of
all data should be restricted to internal personnel unless otherwise justified.

The definitions of who is permitted to view each level of sensitivity data are
intentionally broad at this stage. In the next step of the process, we start to
specify the particular groups and individuals that are granted access to this class
of data.

Defining Roles According to Classification

In the definition of our sensitivity classes we established, in general terms,
which users have access to the data within each class. Within the database, the
enforcement of these definitions is handled through roles.

It is through roles that the administrator defines and manages permissions to the
objects, data and functionality of an installation of the database system, as well
as the databases that reside within these systems. Login accounts and users are
assigned to roles and are referenced to as "members" of the role. When access
to an object, data or functionality is assigned to or revoked from a role it affects
all members of that role.

www.manaraa.com

44

Chapter 2: Data Classification and Roles

There are two types of roles offered in SQL Server:

•	 Server Roles: This type of role represents a collection of logins at the
instance level.

•	 Database Roles: This type of role represents a collection of users at the
database level.

SQL Server offers a third type of role that is intended to manage how
applications can access databases. It is called the "Application Role". Much like
server and database roles, permissions can be granted, revoked and denied to an
application role. Unlike server and database roles, members cannot be assigned
to an application role. This provides the ability for an application to execute
under its own permissions rather than a specific user's permissions.

Access to a database through an application role is accomplished through the
passing of a password, from the client application, and the execution of the
sp_setapprole system stored procedure, which activates the role. At the
point the application role is activated, it supersedes any user accounts that are
associated to the login that was used to gain access to the SQL Server instance.

What is the difference between a user and a login account?

Logins are the means by which a connection to a SQL Server instance can
occur. A login can either be a Windows Login (e.g. MyServer/SmithB),
or a SQL Server Login (e.g. sa). Logins are defined at the instance level
and do not necessarily represent a specific user. Permissions to instance
functionality, such as creating databases, are managed through logins and
the server roles of which these logins are members.
Users are accounts that are defined within a specific database and are
associated with a login. Permissions to database objects, such as tables and
views, are managed through users, and the database roles to which these
users belong. A login name and a user name can be the same value.

www.manaraa.com

45

Chapter 2: Data Classification and Roles

Creating Database Roles

Using the sample HomeLending database, we will create the database roles
that will allow us to manage access to data of varying sensitivity level. These
roles will have the role names of Sensitive_high, Sensitive_medium
and Sensitive_low, which are based on our simplified sensitivity classes of
"High", "Medium" and "Low".

In order to do this, we will use the CREATE ROLE method from SQL Server
Management Studio (SSMS). The following is an example of the syntax of this
method:

CREATE ROLE [Role Name] AUTHORIZATION [Role Owner]

This method's arguments are:

•	 Role name: This is the textual reference to the role. This is used to
identify the role when it is in use.

•	 Role owner: This defines who owns the role. The owner can be
either a database user or another role.

Defining the role owner argument is optional. If the role owner is not defined,
the ownership will be assigned to the database user that created the role. It is
the Role Owner that can assign and alter membership of the role.

The script in Listing 2-1 will create the roles in our sample database, according
to our sensitivity classes. Please note that in order to successfully execute this
script your login account will need to have CREATE ROLE permissions on the
database.
USE HomeLending;
GO

CREATE ROLE Sensitive_low AUTHORIZATION db_owner;
GO

CREATE ROLE Sensitive_medium AUTHORIZATION db_owner;
GO

CREATE ROLE Sensitive_high AUTHORIZATION db_owner;
GO

Listing 2-1: Creating the three sensitivity roles.

www.manaraa.com

46

Chapter 2: Data Classification and Roles

Creating Logins and Users

Before we can begin assigning members to the new roles, in our sample
database, we will need to set up the appropriate server logins and database
users. In the HomeLending database will be six database users, each of which
will be authenticated to the instance through their respective SQL Server login.

Our first step is to create the SQL Server logins through the use of the CREATE
LOGIN method. The following is an example of this method's syntax:

-- Creates a SQL Server login
CREATE LOGIN [Login Name] WITH PASSWORD = [Password]

-- Creates a login from a Windows domain account
CREATE LOGIN [Domain Name\Login Name] FROM WINDOWS

There are many arguments available for this method. These arguments provide
the ability to assign a default schema, default language, default database, the
credentials used to access items externally from SQL Server, enforce password
expiration policies, and associate the Login with a certificate or asymmetric key
from the master database.

When creating a SQL Server login the minimum required arguments are:

•	 Login Name: The textual reference to the SQL Server login that is
used by the end-user to gain access to the instance.

•	 Password: The textual reference to the password that is used to
authenticate the SQL Server login.

When creating a login from a Windows domain account (used for Windows
Authentication to the instance) the minimum required arguments are:

•	 Domain Name\Login Name: The textual reference to the Windows
account, and the domain in which the account exists, that is used by the
end-user to gain access to the instance. Please note that the Windows
account must exist prior to the creation of the login in SQL Server.

For simplicity, we will be creating SQL Server logins in the instance of our
sample database, with the minimum required arguments. The script in Listing
2-2 will create the six SQL Server logins for the instance of our sample
database. Please note that in order to successfully execute this script your login
account will need to have ALTER LOGIN permissions on the instance.

www.manaraa.com

47

Chapter 2: Data Classification and Roles

USE HomeLending;
GO

-- Creates SQL Server Logins
CREATE LOGIN SMITHJW WITH PASSWORD = 'as98(*&sssr73x';
GO

CREATE LOGIN JONESBF WITH PASSWORD = 'ghls39**#kjlds';
GO

CREATE LOGIN JOHNSONTE WITH PASSWORD = 'asdpj3$dkEUmwm';
GO

CREATE LOGIN KELLEYWB WITH PASSWORD = 'lkjd&^aslkjdlJD';
GO

CREATE LOGIN REAGANCX WITH PASSWORD = 'HJ777jsb6$@jkjk';
GO

CREATE LOGIN WOLFBA WITH PASSWORD = 'hey4452h#552Vv';
GO

Listing 2-2: Creating six SQL Server logins.

Having created the SQL Server logins, we can create the corresponding
database users using the CREATE USER method. The following is an example
of the syntax of this method:

CREATE USER [User Name] FOR LOGIN [Login]

This method's arguments are:

•	 User name: This is the textual reference to the database user name.
This is used to identify the database user when it is in use.

•	 Login: This is the textual reference to the login that is to be associated
with the user name. If the login is not provided it will map to a login
that has the same name as the user account. If a login does not exist an
error will be returned.

Additional arguments are available to associate the database user to a certificate
or asymmetric key, which will be covered in later chapters. Also, a default
schema can be assigned to the database user. The default schema defines the
schema within the database that will be searched first for resolving database

www.manaraa.com

48

Chapter 2: Data Classification and Roles

object names. If the default schema argument is not included, as will be the
case in our example, the default "dbo" schema will be used.

Listing 2-3 creates the database users for our sample database. Please note that
in order to successfully execute this script your login account will need to have
ALTER ANY USER permissions to the database.
USE HomeLending;
GO

-- Creates Database Users Mapped to SQL Server Logins
CREATE USER SMITHJW FOR LOGIN SMITHJW;
GO

CREATE USER JONESBF FOR LOGIN JONESBF;
GO

CREATE USER JOHNSONTE FOR LOGIN JOHNSONTE;
GO

CREATE USER KELLEYWB FOR LOGIN KELLEYWB;
GO

CREATE USER REAGANCX FOR LOGIN REAGANCX;
GO

CREATE USER WOLFBA FOR LOGIN WOLFBA;
GO

Listing 2-3: Creating the six database users, corresponding to our
SQL Server logins.

Assigning Members to Roles

Having created the roles, SQL Server logins and the database users for our
sample database, we are now ready to assign membership of each database
role. This is accomplished through the execution of the sp_addrolemember
system stored procedure. The syntax of this system stored procedure is as
follows:

sp_addrolemember [Role Name],[Member Name]

www.manaraa.com

49

Chapter 2: Data Classification and Roles

This system stored procedure's arguments are:

•	 Role Name: The textual reference to the database role in which
members are being added.

•	 Member Name: The textual reference to the database user, database
role, Windows login or Windows group that is being added to the
database role specified in the role name argument.

To begin the assignment of members to our roles we will first want to
consider the inheritance of our sensitivity classes. All users within the
Sensitive_high role are also able to access the items granted to the
Sensitive_medium and Sensitive_low roles. All users within the
Sensitive_medium role also have access to the items granted to the
Sensitive_low role.

Rather than maintaining individual users in all of these roles, we can use the
script in Listing 2-4 to implement this inheritance hierarchy. Please note that in
order to successfully execute this script your login account will need to have
either membership to the db_owner server role or ALTER permissions to
the role.
USE HomeLending;
GO

-- Sensitive_medium role is a member of Sensitive_low
EXEC sp_addrolemember 'Sensitive_low', 'Sensitive_medium';
GO

-- Sensitive_high role is a member of Sensitive_medium
EXEC sp_addrolemember 'Sensitive_medium', 'Sensitive_high';
GO

Listing 2-4: Implementing the inheritance hierarchy in our sensitivity classes.

With this inheritance established, we can now begin to assign the database
users to the roles that define their level of access to sensitive data. For our
sample database we will assign two database users to each role, as shown in
Listing 2-5.
USE HomeLending;
GO

-- These users have been determined to have access to low
sensitive data
EXEC sp_addrolemember 'Sensitive_low', 'SMITHJW';

www.manaraa.com

50

Chapter 2: Data Classification and Roles

GO

EXEC sp_addrolemember 'Sensitive_low', 'JONESBF';
GO

-- These users have been determined to have access to
meduim sensitive data
EXEC sp_addrolemember 'Sensitive_medium', 'JOHNSONTE';
GO

EXEC sp_addrolemember 'Sensitive_medium', 'KELLEYWB';
GO

-- These users have been determined to have access to
highly sensitive data
EXEC sp_addrolemember 'Sensitive_high', 'REAGANCX';
GO

EXEC sp_addrolemember 'Sensitive_high', 'WOLFBA';
GO

Listing 2-5: Assigning members to the database roles.

Assigning Permissions to Roles

Permissions are used to define who can access specific objects within the
database, and the data they contain. Without permissions to a database object,
such as a table, view or stored procedure, an end user will not know that the
object exists. Permissions can also define how a user interacts with the database
object.

There are many defined permissions that allow the security administrator to
exert fine-grained control over the objects that a given user or role can access,
modify, or execute, and the data that they present. Broadly, we could split these
into the following categories:

•	 Permissions to allow access to an object and the data it contains.
This is also called DML (Data Manipulation Language). For example,
granting permissions to execute a stored procedure or user defined
function, select data from a table or view, and insert, update and delete
data in a table.

www.manaraa.com

51

Chapter 2: Data Classification and Roles

•	 Permissions to allow management and control of an object and its
properties. This is also called DDL (Data Definition Language). For
example, granting permission to create a new object, modify it, or
manage permissions of other users or roles to access the object.

While controlling the permissions to all database objects is important for the
overall security of the database, our focus is in the protection of sensitive data
and so we will be presenting specifically the ANSI-92 permissions that allow
control over access to database objects and the data therein.

The ANSI 92 Permissions

The following is a list of permissions that are commonly referred to as ANSI-
92 permissions:

•	 SELECT permissions – when granted, allows the user to execute the
SELECT queries against a table, view or table-valued user defined
function. The SELECT query retrieves rows of data.

•	 INSERT permissions – when granted, allows the user to execute
INSERT statements against a table, view or table-valued user defined
function in order to add rows of data.

•	 UPDATE permissions – when granted, allows the user to execute
UPDATE statements against a table, view or table-valued user defined
function in order to change values contained within existing columns
of data.

•	 DELETE permissions – when granted, allows the user to execute
DELETE statements against a table, view or table-valued user defined
function in order to remove rows of data.

•	 EXECUTE permissions – when granted, allows the user to execute a
stored procedure or scalar-valued user defined function. If the database
objects that are contained within the stored procedure have the
identical owner as the stored procedure, the explicit granting of
permissions to these underlying database objects are not required. This
is known as ownership chaining.

•	 REFERENCES permissions – when granted, allows the user to
create a foreign key constraint to a table, view or table-valued user
defined function.

www.manaraa.com

52

Chapter 2: Data Classification and Roles

•	 ALL permissions – when granted, this provides all of the
ANSI-92 permissions that are applicable for the given database
object. For example, when ALL is granted to a stored procedure only
EXECUTE is granted; but when applied to a table DELETE, INSERT,
REFERENCES, SELECT and UPDATE are granted.

These permissions can be granted to database users, database roles and server
roles by using the GRANT statement in SQL Server Management Studio. The
following is an example of the syntax of this statement:

GRANT [Permissions] ON [Object] TO [Security Account]

This statement's arguments are:

•	 Permissions: The actions the security account can perform. The
options for tables, table-valued user defined functions or views are:
SELECT INSERT, UPDATE, DELETE and REFERENCES. The options
for scalar-valued user defined functions are: EXECUTE and
REFERENCES. The only option for a stored procedure is EXECUTE.
Alternatively, ALL can be used on any database object to grant the ap-
plicable permissions.

•	 Object: The database object to which the permissions are granted.
The database objects that can be referenced here are: tables, columns,
user defined functions, views, and stored procedures.

•	 Security Account: The reference to the principal that is being
granted permissions. The principal can be a Windows Domain Login,
Windows Local Login, SQL Server Login, Database User, Database
Role or Application Role.

If the implementation of permissions only applies to specific columns within
a table or view, a comma separated list of columns must be provided with the
object argument. An example of the syntax when assigning permissions to
specific columns is as follows:

GRANT [Privileges]
 ON [Table/View] ([Column], [Column], [Column]…)
 TO [Security Account]

An alternative strategy to assigning permissions on a column-by-column basis
is to create a view that contains only the columns that a given user or role is

www.manaraa.com

53

Chapter 2: Data Classification and Roles

permitted to see, and then to assign permissions to the view, rather than the
underlying table. This strategy is covered in detail in Chapter 3.

Occasionally, it may be that while a certain user has been made a member of a
role it is deemed that this particular user has no need for a certain privilege that
the role has been granted. In cases such as this, the use of the DENY statement
in SQL Server Management Studio for this specific user will supersede the
permissions defined in their Database Role. The following is an example of the
syntax of this statement:

DENY [Privileges] ON [Object] TO [Security Account]

There may be times when the applied permissions, whether they are granted or
denied, must be removed. This is addressed by using the REVOKE statement in
SQL Server Management Studio. The following is an example of the syntax of
this method:

REVOKE [Privileges] ON [Object] FROM [Security Account]

In the following chapters there are many examples of the use of GRANT and
DENY for the database users for various database objects in the HomeLending
database.

Data Definition Permissions

In addition to the ANSI-92 permissions there are privileges that can be granted
that extend the user's functionality within the database schema. A few examples
of these privileges are as follows:

•	 Create new objects (CREATE permissions).

•	 Modify existing objects (ALTER permissions).

•	 Take ownership of existing objects and maintain permissions to objects.
(TAKE OWNERSHIP and CONTROL permissions).

•	 View the definitions of the database objects (VIEW DEFINITION
permissions).

Listing 2-6 shows an example granting the permissions to the Sensitive_high
database role to CREATE tables and VIEW DEFINITION of objects in the
HomeLending database.

www.manaraa.com

54

Chapter 2: Data Classification and Roles

USE HomeLending;
GO

GRANT CREATE TABLE, VIEW DEFINITION TO Sensitive_high;
GO

Listing 2-6: Granting CREATE TABLE and VIEW DEFINITION permissions to
the Sensitive_high database role.

These permissions are granted, denied or revoked in the same manner as
described for the ANSI-92 permissions.

Evaluating Data for Classification

It is at this step in the process that our understanding of our sensitive data
converges with the definition of the sensitivity classes that were defined earlier
in this chapter. We are ready to evaluate the data elements in our database and
begin assigning them to our sensitivity classes.

The first step is to obtain documentation of all of the fields that are within the
database. If captured in a spreadsheet, this overview of each field can provide a
convenient way to manage the evaluation and documentation process.

Manually opening each table in SQL Server Management Studio and recording
the column information is a mind-numbing, and thankfully unnecessary,
experience. There are many excellent third-party tools that can provide
documentation of database schemas, such as SQL Doc which is a tool
developed by Red Gate Software.

In addition, the INFORMATION_SCHEMA.COLUMNS catalog view will
return many properties regarding all of the columns in the database. For our
purpose, we are interested only in the schema name, the table name, the column
name and the data type of the column, which we can retrieve using the query in
Listing 2-7.

www.manaraa.com

55

Chapter 2: Data Classification and Roles

USE HomeLending;
GO

SELECT
 TABLE_SCHEMA,
 TABLE_NAME,
 COLUMN_NAME,
 DATA_TYPE
FROM
 INFORMATION_SCHEMA.COLUMNS;
GO

Listing 2-7: Retrieving column information from the catalog view.

For databases that are in the process of being created, the column information
can be gathered from the schema design documentation that is prepared by the
Database Architect or Administrator.

As you begin reviewing each of the columns in the database to determine their
sensitivity class, consider the following:

•	 Your default class: Earlier in this chapter we discussed the process of
defining our sensitivity classes. As a part of the class definition process
we defined the class that would be assigned if the sensitivity could not
be identified. This is our default class. In the descriptions of our simpli-
fied scale of sensitivity classes, used in our sample database, we de-
fined our default class as "Medium". Throughout this process, consider
this the assigned class unless otherwise justified and determined.

•	 Laws, regulations, standards and policies: Are there any laws,
regulations, industry standards or corporate policies that specifically
define the data that is stored in a column as sensitive? If so, consider
elevating its sensitivity class. Are there any that specifically define the
data stored within the column as public? If so, consider lowering its
sensitivity class.

•	 Potential damage: Does the disclosure of the data contained within a
column present potential damage to the company or the data subject? If
so, consider elevating its sensitivity class.

•	 Loss of Confidentiality, Integrity and Accessibility: Does the
disclosure of the data contained within a column present a loss of
confidentiality, integrity or availability of the data? If so, consider
elevating its sensitivity.

www.manaraa.com

56

Chapter 2: Data Classification and Roles

•	 Contractual obligations: Are there any contracts that dictate how the
data is to be handled? Some may demand restriction of access while
others may demand availability to the public.

The result of this process is documentation that provides valuable information
when:

•	 Implementing methods of access control

•	 Creating database objects that present a layer of abstraction

•	 Using the encryption features within the database

•	 Enforcing sensitive data handling policies.

Using Extended Properties to Document
Classification

Each object within a SQL Server database contains a set of properties that
define its unique characteristics. Certain properties, such as the date that a
table was created, are informational and cannot be changed. However, other
properties, such as a column's data type, can be changed and the value assigned
to these properties will affect the object's usage.

For our process of establishing and documenting the sensitivity class of each of
our columns, it would be useful if there was an informational property available
that we could use to record the column's sensitivity class. We could then run
a query that would reveal this information on-demand, or we could utilize the
property setting programmatically. Unfortunately, SQL Server does not offer
such a standard property to define sensitivity. However, we can make use of a
feature called Extended Properties.

Extended properties allow a custom property to be defined, with a name and
a value, for a given database object, which can then be used like a standard
property. Extended properties are available on all database objects, including
columns in a table.

To view these extended properties through SQL Server Management Studio,
simply navigate to the desired object in the Object Explorer, right-click on
the object and select the "properties" option. Once the properties window is
opened, select the "extended properties" page option, as shown in Figure 2-2.

www.manaraa.com

57

Chapter 2: Data Classification and Roles

Figure 2-2: Extended Properties Tab in SQL Server Management Studio.

However, for databases with a large number of columns, this method of
creating extended property would prove rather tedious. Fortunately, the
sp_addextendedproperty system stored procedure provides us a
means to accomplish this quickly through a script.

The syntax of this system stored procedure is as follows:

sp_addextendedproperty
 @name=[Property Name],
 @value= [Property Value]
 @level0type=[Object type 0],
 @level0name=[Object name 0],
 @level1type=[Object type 1],
 @level1name=[Object name 1],
 @level2type=[Object type 2],
 @level2name=[Object name 2]

www.manaraa.com

58

Chapter 2: Data Classification and Roles

The arguments to this system stored procedure are:

•	 Property Name: The textual reference of the extended property
to be created.

•	 Property Value: The value that is to be associated with the new
extended property.

•	 Object Level: The object hierarchy that defines the database objects
with which the extended property is associated. In our sample database,
we are interested in assigning the extended properties to the columns
within the tables. The hierarchy for a column is the schema, the table
and finally the column itself.

In our HomeLending database, we will execute the script shown in Listing
2-8. This will create the Sensitivity_Class extended property for the
Borrower_FName column in the Borrower_Name table, which contains
the borrower names. This script will assign the value of "Medium"; thus
documenting the column's sensitivity class:

Please note that in order to successfully execute this system stored procedure
you will need to have ownership or ALTER or CONTROL permissions to
the database objects, in this case a table, in which the extended property is
being added.
USE HomeLending;
GO

EXEC sp_addextendedproperty
 @name='Sensitivity_Class',
 @value='Medium',
 @level0type='SCHEMA',
 @level0name='dbo',
 @level1type='TABLE',
 @level1name='Borrower_Name',
 @level2type='COLUMN',
 @level2name='Borrower_FName';
GO

Listing 2-8: Assigning the medium sensitivity data classification to the Borrower_
FName column.

Executing this stored procedure on a per-column basis is probably no quicker
than using the navigable features of the Object Explorer in SQL Server
Management Studio.

www.manaraa.com

59

Chapter 2: Data Classification and Roles

However, armed with the knowledge that our default sensitivity class in
our sample database is "Medium", we can construct a query, using the
aforementioned catalog view INFORMATION_SCHEMA.COLUMNS catalog
view, to assign this sensitivity class to all columns in our database, as shown in
Listing 2-9.
USE HomeLending;
GO

SELECT
 'exec sp_addextendedproperty ' +
 '@name=''Sensitivity_Class'',' +
 '@value=''Medium'',' +
 '@level0type=''SCHEMA'',' +
 '@level0name=''' + TABLE_SCHEMA + ''',' +
 '@level1type=''TABLE'',' +
 '@level1name=''' + TABLE_NAME + ''',' +
 '@level2type=''COLUMN'',' +
 '@level2name=''' + COLUMN_NAME + ''';'
FROM
 INFORMATION_SCHEMA.COLUMNS;

Listing 2-9: Assigning the medium sensitivity data classification to all columns.

This query will produce a complete sp_addextendedproperty statement
for each column in the database. We can then copy the results into another
query window and execute it to create and assign the default value to all
columns.

If a particular column needs to be assigned a higher or lower sensitivity class,
then we can manually update the Sensitivity_Class extended property
on a case-by-case basis, using either the Object Explorer in SQL Server
Management Studio or another system stored procedure, called
sp_updateextendedproperty. The arguments of this system stored
procedure are identical to the sp_addextendedproperty system
stored procedure.

In our HomeLending database, we have a table named Borrower_
Identification, which contains the various data that identifies an
individual. The Identification_Value column of this table contains the
values of social security numbers, driver's license numbers, passport numbers
and unique tax payer reference numbers. Based upon our sensitivity class
definitions, the column named Identification_Value should be elevated
to the "High" sensitivity class. The script shown in Listing 2-10 uses the

www.manaraa.com

60

Chapter 2: Data Classification and Roles

sp_updateextendedproperty system stored procedure to change the
value of this extended property from "Medium" to "High":

Please note that in order to successfully execute this system stored procedure
you will need to have ownership or ALTER or CONTROL permissions to the
database objects, in this case a table, in which the extended property is being
updated.
USE HomeLending;
GO

EXEC sp_updateextendedproperty
 @name='Sensitivity_Class',
 @value='High',
 @level0type='SCHEMA',
 @level0name='dbo',
 @level1type='TABLE',
 @level1name='Borrower_Identification',
 @level2type='COLUMN',
 @level2name='Identification_Value';
GO

Listing 2-10: Raising a sensitivity level using sp_updateextendedproperty.

One of the big benefits of using these extended properties is that we can then
use the system metadata function, fn_listextendedproperty, to query
them. This function is queried in the same way as any table, view or table-
valued user defined function.

The syntax of the fn_listextendedproperty system metadata function is
as follows:

SELECT *
FROM
 fn_listextendedproperty
 (
 [Property Name] | default | null,
 [Object type 0] | default | null,
 [Object name 0] | default | null,
 [Object type 1] | default | null,
 [Object name 1] | default | null,
 [Object type 2] | default | null,
 [Object name 2] | default | null
);

www.manaraa.com

61

Chapter 2: Data Classification and Roles

The arguments for the fn_listextendedproperty system metadata
function are:

•	 Property Name: This is the textual reference to the property that is
being queried.

•	 Object Level: The object hierarchy that defines the database
objects with which the extended property is associated. Three levels
are required. To return all objects at a given level, use the value
"default". Use "null" to ignore a level after the use of "default".

In our HomeLending database, we can return the sensitivity class extended
property for all columns in the table that store our borrower's asset account
numbers, as shown in Listing 2-11.
USE HomeLending;
GO

SELECT
 objname as Column_Name,
 name as Extended_Property,
 value as Value
FROM
 fn_listextendedproperty ('Sensitivity_Class',
 'schema', 'dbo',
 'table', 'Asset_Account',
 'column', default);
GO

Listing 2-11: Querying extended properties using the
fn_listextendedproperty system metadata function.

Alternatively, we can query extended properties using the sys.extended_
properties catalog view. Listing 2-12 shows an example of the syntax of
this catalog view:
SELECT
 class as Object_Class_ID,
 class_desc as Object_Class_Description,
 major_id as Object_ID,
 minor_id as Column_Parameter_Index_ID,
 name as Extended_Property_Name,
 value as Value
FROM
 sys.extended_properties;
GO

Listing 2-12: Querying extended properties using the
sys.extended_properties catalog view.

www.manaraa.com

62

Chapter 2: Data Classification and Roles

Use this catalog view like any other view or table. It can join to other tables and
be filtered on any column contained within the catalog view.

Refining the Sensitivity Classes

Although a good start, the classifications in our simplified example are often a
little too general to be useful in a real-world commercial business environment.
Often the measurements of potential damage to an organization or subject of
the sensitive data have more complex levels of measurements than simply
"minor" and "major". Also, the internal structure of a commercial business can
be rather complex. Simply restricting data to "Internal Use Only" may be a too
general and sorely insufficient restriction.

Disclosure Damage Potential

In a real-world scenario, the differentiation of the levels of potential damage
to the organization or the subject of the sensitive data can be rather complex.
Here is an example of a series of classes that might be more suitable for use in
a commercial setting:

Public (General Public) – Information that is publicly available through other
civil sources or specifically designated by regulation or corporate policy of its
public information status.

Damage Potential: Information that if improperly disclosed presents no
exposure to lawsuits, fines, criminal prosecutions, loss of competitive
advantage, or loss of consumer confidence.

Private (Internal Personnel Only) – Information restricted in terms of
disclosure though regulation or corporate policy.

Damage Potential: Information that if improperly disclosed presents minor
exposure to lawsuits, fines, criminal prosecutions, loss of competitive
advantage, or loss of consumer confidence.

www.manaraa.com

63

Chapter 2: Data Classification and Roles

Confidential (Specific Personnel Only) – This class includes information that
is designated explicitly as sensitive or identifiable through regulation, industry
standard or corporate policy.

Damage Potential: Information that if improperly disclosed presents significant
exposure to lawsuits, fines, criminal prosecutions, loss of competitive
advantage, or loss of consumer confidence.

Sensitive (Executive Personnel Only) – This class includes information that is
expressly categorized as such by the Chief Executive Officer, Chief Financial
Officer, Chief Information Officer or Chief Security Officer of the organization.

Damage Potential: Information that if improperly disclosed presents extreme
exposure to lawsuits, fines, criminal prosecutions, loss of competitive
advantage, or loss of consumer confidence.

Specialized Cases

In the consideration of sensitivity classes for government and military entities
the use of disclosure damage potential is typically the primary delineation of
the classes. Below is an example of a series of classes that might be used by a
government agency or military:

Unclassified (General Public and Foreign Governments)
Damage Potential: Information that when disclosed has no consequence to
national security or military personnel.

Confidential (Military Personnel Only)
Damage Potential: Information that if improperly disclosed presents a threat to
national security or military personnel.

Secret (Specific Officials Only)
Damage Potential: Information that if improperly disclosed presents a serious
threat to national security or military personnel.

Top Secret (Specific High Level Officials Only)
Damage Potential: Information that if improperly disclosed presents a grave
threat to national security or military personnel.

www.manaraa.com

64

Chapter 2: Data Classification and Roles

Defining Policies According to Classification

Once the sensitivity classes are defined, the next task is to establish the data
handling policies that are appropriate for a given class. These policies help the
users of the information determine the usage boundaries for a given class of
data, and how Database Administrators are to respond to requests for access to
that data.

Any policy must have an owner. This owner is the person who reviews and
approves or declines requests for modification to existing policies. They are
the ones who coordinate efforts to enforce and audit the compliance to these
policies.

As a Database Administrator it is unlikely that you will have this ownership
responsibility assigned to you. Typically these policies are owned and
defined by the Chief Information Officer or the Chief Security Officer.
However, it is still valuable for a DBA to understand this portion of the
data classification process.

Information can be used in many ways. These data handling policies must
consider how the data may be utilized within the database, and how the data
may be transferred and disclosed outside the database. In the latter case, the
policies must state the means of disclosure that are permitted for each class,
along with any restrictions or procedures that must be applied in each case. For
example:

•	 Electronic Disclosure: This covers any electronic transfer of
information from the database. It includes presentation of
information on a monitor, file transfer protocol (FTP) transmission
of information, information passed from a system to another system,
presentation of information on the Internet, and information sent
through fax, e-mail or texting.

•	 Verbal Disclosure: This covers the disclosure of information from
person to person either face-to-face, through the telephone, or public
announcement system. Often included in this category is written
disclosure that is not sent through the mail.

•	 Mail: This covers disclosure of information through internal and
external mailing systems. Special considerations might include the
need to add special envelope markings that indicate the sensitivity of
the information contained within.

www.manaraa.com

65

•	 Photocopying and Printing: This covers the act of photocopying and
printing information. Unique challenges that are presented in this
category might include the need to clear the photocopier or printer
cache after use, or the use of a designated printer located in a secure
location for printing sensitive documents.

•	 Information Storage and Destruction: The storage and destruction of
sensitive data is often subject to regulations that dictate the duration of
time it is to be stored. Simply disposing of sensitive information
in a dumpster will expose a business to extremely high risk of
improper disclosure.

With the sensitivity classes that were used in the HomeLending database
we could expect data handling polices that would provide some of the
following verbiage:

All data that is categorized with a "High" sensitivity class shall not be
displayed in plain text through an application. If presentation through an
application is unavoidable the data must be truncated or obfuscated in some
fashion to which the data does not present full disclosure.

All data that is categorized with a "High" sensitivity class shall not be
transmitted electronically through e-mail, sent to another party through file
transfer protocol (FTP), transferred through an interface to another system,
published on the internet or other publishing media, sent within a facsimile
document. If transfer of this information is required through electronic means,
this data must be encrypted with a strong key that is no less than 128 bits
in length.

All data that is categorized with a "High" sensitivity class must not be stored
in plain text on any data storage device including databases, spreadsheets,
documents, backup files and flat files. The storage of this data must either be
truncated or encrypted with a strong key that is no less than 128 bits in length.
The storage and retention period of this data must be in compliance with
government regulations, industry standards and corporate policies.

All data that is categorized with a "Medium" or "High" sensitivity class must
not be stored on a portable device, such as a thumb drive, CD, DVD or hard
drive within a laptop, in plain text. If storage on a portable device is required,
this data must either be truncated or encrypted with a strong key that is no less
than 128 bits in length.

www.manaraa.com

66

Chapter 2: Data Classification and Roles

All data that is categorized with a "Medium" or "High" sensitivity class shall
not be provided in plain text on printed reports or documents. If printing is
required, this data must be truncated or obfuscated in such a fashion that the
plain text no longer presents a security threat.

Summary

With our sensitivity classes defined, our database roles established, members
assigned to the roles, our data handling policies defined, and having evaluated
the data within our database and documented it, we are now ready to take a
look at how our database schema may need to be designed, or re-architected, to
protect our sensitive data.

www.manaraa.com

67

Chapter 3: Schema Architecture
Strategies

Policies define how we are to interact with sensitive data. Classification helps
us recognize sensitive data and allow us to apply the policies and database
security features. We now turn our attention to the physical structure in which
data is stored and organized. This is known as the schema architecture.

The design of the schema architecture contributes heavily to the database's
storage efficiency, performance, scalability and integrity through a process
called normalization. Normalization can also improve the protection of
sensitive data through the physical separation from non-sensitive data. In
addition, the utilization of database object schemas, views and linked servers
can further enhance this separation resulting in a very effective level of
abstraction that will enhance your sensitive data protection efforts.

In this chapter we will cover more specifically how normalization, database
schema objects, views and linked servers can be utilized to further the
protection of sensitive data.

Overview of HomeLending Schema Architecture

Before we begin the dive into the details of the various schema design
strategies that we'll use to protect sensitive data in the HomeLending
database, it's worth taking a "big picture" look at the schema design that we
plan to implement, as shown in Figure 3-1.

This figure illustrates three of the four design strategies that we'll cover in this
chapter:

1.	 The third normal form level of normalization that is applied to the
schema architecture of the HomeLending database.

2.	 The introduction of the Income_Schema database object schema, to
house the sensitive Borrower_Income table, and its relationship to
the tables in the default database object schema (dbo).

3.	 The implementation of a linked server for the Credit_Report data.

www.manaraa.com

68

Chapter 3: Schema Architecture Strategies

Figure 3-1: Portion of the HomeLending schema that will be presented in this
chapter.

It is worth noting, in regard to the introduction of the Income_Schema
database object schema, that in reality we would probably extend this concept,
for example creating a "Borrower" database object schema for the borrower
tables rather than have all the remaining tables in the dbo schema. However,
we've kept things relatively simple here in order to better illustrate the concepts
in this book.

The fourth strand of our strategy, not depicted in Figure 3-1, is the abstraction
of the database schema, using views, in order to simplify data queries for the
end user and also prevent them from viewing unauthorized data.

www.manaraa.com

69

Chapter 3: Schema Architecture Strategies

Protection via Normalization

Defining the storage structure of data is an important step in the creation
of a database. The process of breaking up a mass "lump" of data into
logical and relational collections is called normalization. This process
defines the organization of tables, their relationship to other tables, and the
columns contained within the tables. The proper and appropriate application
of normalization is a critical component in ensuring the integrity and
confidentiality of the data.

The degree to which normalization has been applied is measured primarily by
levels of "normal form". These levels are defined by specific criteria that must
be met by the schema design. Each of these levels is cumulative. The higher
form cannot be achieved without first meeting the criteria of the lower forms.
Since the introduction of relational databases there have been many forms of
normalization developed; but the three most common forms of normalization
are first normal form, second normal form and third normal form. Among
these common forms, the separation of data into logical groups that is possible
through third normal form provides the highest level of protection of sensitive
data. Figure 3-2 shows a de-normalized version of Borrower information that
resides in our HomeLending database.

Figure 3-2: De-normalized example of borrower tables.

The criteria that define the three most common levels of normal form are
described in the following sections. In practice, the level of normalization that
is targeted may vary depending upon the intended use of the tables. A table that
contains data that will be modified regularly, such as in an on-line transaction
processing database (OLTP), will benefit from a higher level of normalization,

www.manaraa.com

70

Chapter 3: Schema Architecture Strategies

due to the reduction in redundant data storage within the database. A table
that contains data that is static, but heavily read, such as an on-line analytic
processing database (OLAP), will benefit from a lower level of normalization
due to the reduction of joins required to access related data.

First Normal Form

•	 Data should be separated into tables, each of which contains columns
that are logically similar.

•	 Each of these tables should have a unique identifier, known as a
primary key, which represents each row and prevents duplicate rows.

•	 The columns in the table should not contain any "repeating groups"
of data.

Figure 3-3 shows a version of the borrower information that meets the criteria
for first normal form. The loan data is stored in a separate table from the
borrower information. A single borrower record can be related to multiple loan
records. Each record contains its own primary key and the data is not repeated
across the data row.

Figure 3-3: First normal form example of borrower tables.

Second Normal Form

•	 The non-primary key columns that are contained within the table must
be dependent upon the primary key. If the data in the table applies to
multiple rows within the table it should be moved to a separate table.

•	 Tables contain values that are related to other tables’ primary key.
These values are called foreign keys.

www.manaraa.com

71

Chapter 3: Schema Architecture Strategies

Figure 3-4 shows a design for the borrower information that meets the criteria
for second normal form. Notice that the Borrower_Type, Purpose_Type
and Mortgage_Type columns have _ID added to their names. These items
are now foreign keys to reference tables. Also, the introduction of the Loan_
Borrowers table allows many borrowers to be related to many loans. The
movement of the borrower type to the Loan_Borrowers table allows for each
borrower relationship to loans to be defined individually.

Figure 3-4: Second normal form example of borrower tables.

Third Normal Form

•	 Table data only contains data that is dependent upon the primary key.

Figure 3-5 shows a design for the borrower information that meets the criteria
for third normal form. The borrower's federal id number, driver's license and
passport number are pulled into a Borrower_Idenitification table, as
the combination of Identification_Type_ID and Identification_
Value columns. We will see the benefits of this change later in this book
when we discuss encryption. Additionally, the borrower name is pulled out of
the borrower table, allowing multiple versions of names for a borrower such
as alias and maiden names. The names have also been broken out to their
respective parts for more flexible usage.

www.manaraa.com

72

Chapter 3: Schema Architecture Strategies

Figure 3-5: Third normal form example of borrower tables.

Normalization and Data Redundancy

When a database is well normalized, the occurrence of repeating information
throughout the database is reduced or eliminated. This, in turn, reduces or
eliminates the likelihood that data is updated in one place and not another,
thereby introducing inconsistencies. Consider, for example, a store that sells
T-shirts. This store may have many types of shirts in their inventory, from many
suppliers. If their database was not normalized they would likely have the
supplier's address in each row of their inventory. When a supplier notifies them
of a change of address they would need to update every row that contained the
old address. This difficult task will be made worse by the fact that it is probable
that the address was recorded inconsistently throughout the database, and so it's
likely that some instances will be missed.

If their database was normalized, the address information for each supplier
would be maintained in a single location in the database, most likely in a
"supplier address" table, related to the supplier table. This would result in
consistency in the address information, elimination of the need to continually
enter the address information, and would make the address change process a
snap.

www.manaraa.com

73

Chapter 3: Schema Architecture Strategies

Normalization and Data Security

For security purposes, the reduction in data redundancy provides an
environment that can be managed in a more effective manner. Furthermore,
the separation of sensitive information from identifying information reduces
the value of the sensitive information to the potential data thief, and provides a
degree of obscurity to the casual, yet authorized, viewer.

Consider the following example from our HomeLending database, illustrated
in Figure 3-6. The Borrower table has a one-to-many relationship to the
Borrower_Employer table. This design lets us capture each employer that
the borrower lists on their application. The borrower's income data is stored in
a separate table, called Borrower_Income, and is related to the Borrower_
Employer table.

Figure 3-6: Borrower table to Borrower_Income table relationship.

As a DBA you might find yourself, one fine day, troubleshooting the
Borrower_Income table in this database. The table is opened and within it
is income information for all borrowers. Since the table has been effectively
normalized, the only data that is disclosed will be a series of rows containing
money values, each associated with a numeric foreign key, referring to the
Borrower_Employee table. If the table were not normalized, it is likely that
each piece of income data in the table would have the borrower's name next to
it, disclosing confidential and identifying data. In addition, you could make a
fair bet that the borrower's federal tax identification number would be there too!

www.manaraa.com

74

Chapter 3: Schema Architecture Strategies

Normalization and the Borrower_Identification table

Let's now take a look at the Borrower_Identification table, depicted in
Figure 3-7, and consider its use of normalization.

Figure 3-7: The Borrower_Identification table.

This table's design is unique in that the Identification_Value column
is used to store various values that are used to validate identity, such as federal
identification number, passport number and driver's license number. The
Identification_Type_ID column is a foreign key to a reference table
called Identification_Type. It is the Identification_Type_ID
column that differentiates these values for each row.

An example of the data that would be contained within the Borrower_
Identification table is shown in Table 3-1.

Borrower_
ID

Identification_
Type_ID Identification_Value

103 2 R7KFU413243TDDIN
103 1 555-08-4862

103 3 6311791792GBR6819855M297028731

Table 3-1: Sample data from the Borrower_Identification table.

One benefit of this column reuse is flexibility. This design allows quick
implementation of new forms of identification validation; it simply involves
creating a new record in the Identification_Type_ID column.

Another benefit to column reuse is the obscurity that this approach introduces
to the column's data. If the contents of this table were disclosed, the viewer

www.manaraa.com

75

Chapter 3: Schema Architecture Strategies

would still need to gain additional information, in this case the contents of the
Identification_Type table, as well as the contents of the Borrower
table, in order to make the disclosure useful for fraudulent purposes.

Separating sensitive data from the object to which it relates, using
normalization, is a fundamental security strategy. However, we can go even
further than that. A single SQL Server installation, also known as an instance,
can hold up to 32,767 databases. We can strategically place blocks of sensitive
data in their own databases to provide a layer of obscurity and separation that
extends to the physical data files, transaction logs and back up files.

Querying data across multiple databases within an instance of SQL Server
requires the use of the fully qualified object names, as demonstrated by the
query in Listing 3-1.
SELECT
 bnam.Last_Name,
 ident.Identification_Value
FROM
 Database1.dbo.Borrower bor
 INNER JOIN Database1.dbo.Borrower_Name bnam
 ON bor.Borrower_ID = bnam.Borrower_ID
 INNER JOIN Database2.dbo.Borrower_Identification bi
 ON bor.Borrower_ID = bi.Borrower_ID;
GO

Listing 3-1: Qualifying object names in cross-database queries.

Please note that the HomeLending database schema does not reflect the
specific cross database architecture shown in Listing 3-1. It is offered only as
an example of this approach.

Using Database Object Schemas

Throughout this chapter the word "schema" has been used as a general
term to describe the database architecture and its objects. However, in SQL
Server the term schema, or more formally Database Object Schema, refers
to the namespace, or container, in which database objects reside. Inside the
database object schemas are database objects, such as tables, views and stored
procedures, which can be grouped together logically. This offers a way to
organize your database objects and control access to them at a group level.

www.manaraa.com

76

Chapter 3: Schema Architecture Strategies

When a user is denied access to a database object schema, they cannot view
or access any of the database objects within it. This offers a level of obscurity
to portions of the overall database schema design and can be used to separate
highly sensitive data from less sensitive data. Figure 3-8 illustrates how a
user may have access to one database object schema, in this case the default
database object schema of dbo, while being denied to all objects within another
database object schema, here, the Income_Schema database object schema.

Figure 3-8: A user with permissions to the default database object schema while
being denied access to the Income_Schema database object schema.

Database object schemas offer an effective method of protecting sensitive
data through separation, and can also make permission management less of
a headache to the DBA. To create a database object schema in a database
the CREATE SCHEMA method will be executed in SQL Server Management
Studio. The following is an example of the syntax of this method:

CREATE SCHEMA [Schema Name] AUTHORIZATION [Schema Own-
er]

www.manaraa.com

77

Chapter 3: Schema Architecture Strategies

This method's arguments are:

•	 Schema name: This is the textual reference to the database object
schema.

•	 Authorization: This is the textual reference to the schema owner.
This argument is optional. When this argument is not included the user
creating the database object schema is set as the object owner.

In the HomeLending database, the only role that we want to allow to modify
database objects, or set permissions, in the Income_Schema schema is the
Database Role of db_owner. Therefore, the statement that was used to create
the Income_Schema schema includes the AUTHORIZATION argument, as
shown in Listing 3-2.
Use HomeLending;
GO

CREATE SCHEMA [Income_Schema] AUTHORIZATION [db_owner];
GO

Listing 3-2: Creating the Income_Schema database object schema.

Having created the database object schema, we can use the GRANT, DENY and
REVOKE statements to manage permissions to that schema, in a similar fashion
to the manner in which we've previously used them to manage permissions to
database objects.

An example of the syntax used to grant SELECT, INSERT and UPDATE
privileges to the Sensitive_high Database Role for the Income_Schema
database object schema, is shown in Listing 3-3.
Use HomeLending;
GO

GRANT SELECT, INSERT, UPDATE
 ON SCHEMA::Income_Schema
 TO Sensitive_high;
GO

Listing 3-3: Granting permission to select, insert and update data in
Income_Schema to the Sensitive_high database role.

Notice the two colons (::) used in reference to the schema. This is a scope
qualifier. A scope qualifier defines that the permissions are restricted to a
specific object type. In this case, we defined the object type to be a schema and

www.manaraa.com

78

Chapter 3: Schema Architecture Strategies

then reference the schema on which we wish to grant permissions.

When referencing database objects, it is good practice to refer to them with
their fully qualified name, which will include a reference to the database object
schema in which the object resides. When the database object schema is not
included, SQL Server will search the database user's default database object
schema to try to find the database object that is being referenced; if the database
object is not found an error will be returned stating that the object is invalid.

Listing 3-4 shows a sample query in which the fully qualified names of the
tables in the default database object schema, which is dbo, and the Income_
Schema schema, are referenced.
Use HomeLending;
GO

SELECT
 be.Employer_Name,
 bi.Income_Amount,
 it.Income_Type_Desc
FROM
 dbo.Borrower_Employer be
 INNER JOIN Income_Schema.Borrower_Income bi
 ON be.Employer_ID = bi.Employer_ID
 INNER JOIN Income_Schema.Income_Type it
 ON bi.Income_Type_ID = it.Income_Type_ID;
GO

Listing 3-4: Using fully qualified database object names.

Using Views

Views are objects within SQL Server that provide a layer of abstraction
between the end users and the underlying schema. Rather than directly access
the base table, the users query a "virtualized table" that holds only the data that
is specific to their needs.

Users can execute SELECT statements against a view in the same way that they
would if they were querying the underlying tables. If the query that is used to
create the view is an updateable query, in other words, one that references a
single base table and does not present aggregated data, then UPDATE, INSERT
and DELETE statements can also be executed against the view. It is worth
noting that executing an INSERT statement against a view that does not contain

www.manaraa.com

79

Chapter 3: Schema Architecture Strategies

all of the underlying table's columns will result in an error if the columns that
are not included in the view do not allow nulls and do not have a default value.

This abstraction of the database schema, using views, means that data can be
represented in a more friendly way to the end user. The query that defines the
view can perform any required aggregation of the data, thus saving the user
from having to perform complex joins, summing, grouping and filtering to
return the required data. Views are often used to report sales and to identify
trends to which management needs to respond.

Views also have an important security function. As well as providing a useful
reporting mechanism for end users, they provide a mechanism by which
to prevent those end users viewing any data that their role does not have
authorization to access. If a user had direct access to a table, say our Credit_
Report table, which contained a mix of low and high sensitivity columns then
it would be difficult to prevent the user from viewing the high-sensitivity items.
Instead, we can create a view that exposes only the low-sensitivity columns and
give the role permission to query that view, rather than the underlying table, as
illustrated in Figure 3-9.

Therefore, through a view, the security administrator can allow users access to
the aggregated data they need for reporting, while obscuring the structure of the
schema and reducing the risk of accidental or intentional disclosure of sensitive
data.

Figure 3-9: Illustration of a view.

www.manaraa.com

80

Chapter 3: Schema Architecture Strategies

Creating Views

Views can be created by using the CREATE VIEW method. The following is an
example of the syntax of this method:

CREATE VIEW [View Name] AS [Select Statement]

This method's arguments are:

•	 View Name: The textual reference to the view. This should include the
schema in which the view belongs.

•	 Select Statement: The select statement that is executed to present
the data in the view.

In our sample database, we will create a view as shown in Listing 3-5, which
will present the basic borrower information without revealing any sensitive
data:
Use HomeLending;
GO

CREATE VIEW [dbo].[vwBorrower]
AS
SELECT
 b.Borrower_ID,
 ba.Borrower_Address_Street,
 ba.Borrower_Address_City,
 ba.Borrower_Address_State,
 ba.Borrower_Address_Zipcode,
 at.Address_Type_Desc,
 bn.Borrower_LName,
 bn.Borrower_MName,
 bn.Borrower_FName
FROM
 dbo.Borrower b
 INNER JOIN dbo.Borrower_Address ba
 ON b.Borrower_ID = ba.Borrower_ID
 INNER JOIN dbo.Borrower_Name bn
 ON b.Borrower_ID = bn.Borrower_ID
 INNER JOIN dbo.Address_Type at
 ON ba.Address_Type_ID = at.Address_Type_ID;
GO

Listing 3-5: Creating a view in the HomeLending database.

Once the view is created we can assign permissions to the view.

www.manaraa.com

81

Chapter 3: Schema Architecture Strategies

Assigning Permissions to Views

In Chapter 2 of this book we explored data classification. As a result of that
process, we created some Database Roles and added some SQL Server Logins
as members. These roles were designed to manage the permissions to database
objects; therefore controlling the disclosure of sensitive data.

In our sample database, we have utilized views to abstract the architecture
of our schema. We will not grant the Database Roles permission to access
the table objects. If a user, other than the database owner, were to access the
database through SQL Server Management Studio and try to view the table
objects, none would appear. Instead, we will grant permission to access only the
view objects. When stored procedures and user defined functions are created
they too will have the appropriate permissions granted to them.

In Listing 2-9 of Chapter 2, we used extended properties to assign a sensitivity
of "medium" to all columns in our database. Therefore, the columns used in
our view, named vwBorrower, contain data that is classified as "medium" and
so we will need to grant permissions to access this view to the Database Role
named Sensitive_medium.

For data integrity purposes, we do not want users deleting records. Also, the
vwBorrower view is not updatable since it contains joins to other tables;
therefore, only the SELECT privileges are granted, as shown in Listing 3-6.
Use HomeLending;
GO

GRANT SELECT
 ON dbo.vwBorrower
 TO Sensitive_medium;
GO

Listing 3-6: Granting to the database role, Sensitive_medium, permission to
select on the view vwBorrower.

Since the Database Role named Sensitive_high is included as a member
of the Sensitive_medium Database Role, we do not need to explicitly grant
permissions to the Sensitive_high Database Role.

At this point, every login that is a member of the Sensitive_meduim or
Sensitive_high role will have permission to access our view. However,
let's say we have a specific user, with a SQL Server Login of JOHNSONTE, who

www.manaraa.com

82

Chapter 3: Schema Architecture Strategies

meets the overall requirements for membership of the Sensitive_medium
role but should be restricted to specific data due to other policies. In this case,
the internal policy dictates that JOHNSONTE should not have access to details
regarding a borrower's loan history.

To deny the SQL Server Login JOHNSONTE of SELECT privileges to the
vwBorrower view, the command shown in Listing 3-7 would be executed.
Use HomeLending;
GO

DENY SELECT
 ON dbo.vwBorrower
 TO JOHNSONTE;
GO

Listing 3-7: Denying SELECT privileges to the SQL Server login JOHNSONTE.

At some point during the course of business, the previous internal policy has
been changed and this user is now allowed access to loan data. To remove the
previous DENY that was implemented we will use the REVOKE command. This
command removes any previously granted or denied permissions. The use of
the REVOKE command is illustrated in Listing 3-8:
Use HomeLending;
GO

REVOKE SELECT
 ON dbo.vwBorrower
 FROM JOHNSONTE;
GO

Listing 3-8: Returning SELECT privileges to JOHNSONTE.

The result of this action removes the restriction to that view and his login is
now consistent with the other members of the Sensitive_medium Database
Role.

Harnessing Linked Servers

Linked Servers offer to security administrators, when implementing their
schema architecture strategies, an additional layer of separation between
sensitive and less sensitive data. Often, certain pieces of sensitive data

www.manaraa.com

83

Chapter 3: Schema Architecture Strategies

are required by several different applications or departments within an
organization. However, rather than store this data in multiple places, with the
attendant security risk that this entails, it may be desirable to store the data in
one place only, on a separate physical server, to which access can be strictly
regulated. This server may be in a separate geographic location from the servers
that contain information of lower sensitivity.

So, for example, rather than having a customer's federal tax identification
number stored in multiple systems, with "varying" levels of security applied
in each case, you can place it on a central server that can be securely accessed
by all systems that need this information. This "centralized" architecture has
several advantages:

•	 It ensures that the data is consistently protected and that its access is
easily managed.

•	 It reduces the redundancy of sensitive data throughout the enterprise

•	 It provides benefits for disaster recovery due to the ability for a linked
server to reside in a separate physical location.

•	 It provides a separation in the administration responsibilities, which
reduces the risk of the DBA being the source of disclosure.

Access to the SQL Server instance containing the sensitive data, from other
servers in the system, is enabled using Linked Servers.

NOTE:

While it's optimal that the linked instance resides on a separate physical
server, it can also reside on the same physical server in another SQL Server
instance.

This feature of SQL Server allows commands from one instance of SQL Server
to be executed against another instance through an OLE DB (Object Linking
Embedding Database) provider, as shown in Figure 3-10.

www.manaraa.com

84

Chapter 3: Schema Architecture Strategies

Figure 3-10: Linked servers.

The linked server does not necessarily need to house a SQL Server instance.
There are OLE DB providers that allow you to link to an Oracle database,
DB2, XML, or MS Access, and various other database platforms are supported
through Open Database Connectivity (ODBC) drivers.

Implementing Linked Servers

In our sample HomeLending database, we will use a linked server to access
credit report data for our borrowers. Rather than storing the credit report details,
which are packed with account numbers, balances, and federal tax identification
numbers, alongside the loan application data, they will be stored in a separate
physical server (Server2), with highly restricted access, as shown in Figure
3-11.

Figure 3-11: Foreign key to a table on a linked server.

www.manaraa.com

85

Chapter 3: Schema Architecture Strategies

We'll allow only the interface with the credit bureau to write data and the users
that gain access to this linked server will be carefully defined and granted only
read permissions. Therefore, through the use of linked servers the credit report
details in our sample database are stored securely in a server that is dedicated
to that sensitive data. Its reference to any borrower information that would
be identifiable is through a foreign key that is stored in our primary server,
referenced in Figure 3-11 as SERVER1\SQLINSTANCEA.

Linked servers are implemented using the sp_addlinkedserver system
stored procedure, the syntax of which is as follows:

sp_addlinkedserver [Server Name],[Product Name],
 [Provider Name],[Data Source],
 [Location],[Provider String],
 [Catalog]

This system stored procedure's arguments are as follows:

•	 Server Name: The textual reference to the linked server that is being
added. If using the native SQL Server OLE DB provider the server and
instance name of the target database is the value that should be entered.

•	 Product Name: A descriptor of the database product that is being
connected. For example: "SQL Server" or "Oracle".

•	 Provider Name: The unique programmatic identifier of the OLE
DB provider that is being used. This can be obtained using the provider
name value from the results of executing the extended stored procedure
xp_enum_oledb_providers. If this argument is omitted, it will
default to the native SQL Server OLE DB provider.

•	 Data Source: The textual reference to the instance that is accessed
through the linked server. The value of this argument is dependent upon
the provider used. If the native SQL Server OLD DB provider is used
this argument should be omitted. This argument is passed as a property
to the OLE DB provider.

•	 Location: The textual reference to the location of the linked server
database. This argument is passed as a property to the OLE DB
provider.

•	 Provider String: The textual reference to the connection string to
the instance that is being linked. This argument is passed as a property
to the OLE DB provider.

www.manaraa.com

86

Chapter 3: Schema Architecture Strategies

•	 Catalog: The textual reference to the specific database that is being
accessed through the linked server. This argument is passed as a prop-
erty to the OLE DB provider.

Not all of the arguments are applicable to all OLE DB providers. In the case of
the native SQL Server OLE DB provider, simply providing the server name and
product is sufficient.

Once a linked server has been created, its logins will need to be established
to provide access to it. This is accomplished by executing the sp_
addlinkedsrvlogin system stored procedure, the syntax of which is as
follows:

sp_addlinkedsrvlogin [Linked Server Name],[Use Self],
 [Local Login],[Remote User],
 [Remote Password]

This system stored procedure's arguments are:

•	 Remote Server Name: The textual reference to the linked server for
which the login is being created.

•	 Use Self: A value of true indicates that the users connect to the
linked server using the credentials that are used on the primary server.
A value of false indicates that the credentials that are used to login to
the linked server are different than the credentials used to login to the
primary server.

•	 Local Login: The SQL Login or Windows Login that is used to gain
access to the linked server.

•	 Remote User: The SQL Login used to gain access to the linked
server, if the Use Self argument is set to false.

•	 Remote Password: The password used to gain access to the linked
server if the Use Self argument is set to false. Please note that this
argument is passed to the linked server in plain text.

•	 For the benefit of the HomeLending database, which resides on
SERVER1\SQLINSTANCEA, we will create a linked server, referenced
as SERVER2\SQLINSTANCEB, using the native SQL Server OLE DB
provider, in which the credit report data will be stored. The server login
on the linked server will be the same as that used on our primary server,
as shown in Listing 3-9.

www.manaraa.com

87

Chapter 3: Schema Architecture Strategies

USE Master;
GO

EXEC dbo.sp_addlinkedserver
 @server = N'SERVER2\SQLINSTANCEB',
 @srvproduct=N'SQL Server';
GO

EXEC dbo.sp_addlinkedsrvlogin
 @rmtsrvname=N'SERVER2\SQLINSTANCEB',
 @useself=N'True',
 @locallogin=NULL,
 @rmtuser=NULL,
 @rmtpassword=NULL;
GO

Listing 3-9: Implementing a linked server.

You may notice that the script used to create the linked server reference is
executed on the Master database on our primary server rather than the
HomeLending database. This is due to the fact that a linked server is a server
object, rather than a database object, which can be available to any database
that is created within the primary server.

Querying Linked Servers

In order to query the data contained on a linked server you must include the
server name and instance name in the fully qualified name of each database
object. If the OLE DB data source is a database other than SQL Server you will
need to consider any syntax differentiation when writing queries against that
data source. Listing 3-10 shows a sample of a query in which the credit report
data is being combined with the loan application data in our sample database.
Use HomeLending;
GO

SELECT
 ln.Lender_Case_Number,
 cr.Credit_Score,
 cr.Beacon_Score,
 cr.Date_Report_Requested
FROM
 dbo.Loan ln
 INNER JOIN dbo.Loan_Credit_Report lncr
 ON ln.Loan_ID = lncr.Loan_ID

www.manaraa.com

88

Chapter 3: Schema Architecture Strategies

 INNER JOIN [SERVER2\SQLINSTANCEB].CreditReport
 .dbo.Credit_Report cr
 ON lncr.Credit_Report_ID = cr.Credit_Report_ID;
GO

Listing 3-10: Query the Linked Server.

Network Security

There are some additional security considerations when implementing linked
servers as a means of protecting sensitive information. Data will be traveling
across network lines and potentially across the Internet. Performance will be
affected but, more importantly given our security focus, it will also introduce
a potential vulnerability to data being gleaned through hackers monitoring
network traffic.

The encryption features of SQL Server are designed to protect data at rest,
which is the data while it is in storage. Once the data is queried and decrypted
it is considered data in transit and the protection of the data is dependent upon
other security measures on the network such as Secure Sockets Layer (SSL).
If the data that is stored on a linked server is encrypted, the encryption and
decryption processes will likely occur at the linked server; otherwise the script
in Listing 3-10 will need to include the commands for cryptographic functions.
More details in regard to these cryptographic functions will be discussed in the
coming chapters.

Summary

The methods that are presented in this chapter do not suggest that obscurity and
abstraction alone are sufficient methods to protect sensitive data. Implementing
methods of obscurity in concert with additional methods of obfuscation,
encryption and access management provide a more complex and secure
environment than implementing any single method.

www.manaraa.com

89

Chapter 4: Encryption Basics
for SQL Server

The hieroglyphic messages that are inscribed upon the walls of the tombs of the
Egyptian Pharaohs were a mystery for many centuries. Through the ages there
were many attempts to translate these images, but none were wholly successful
until the discovery of the Rosetta Stone in 1799. This stone was engraved
with three versions of the same message; one in hieroglyphic, one in Egyptian
demotic, and one in Greek. It provided the key required to deciphering these
ancient images.

In the context of data security, the Rosetta Stone is analogous to the
cryptographic key that is used to transform, or encrypt, data into unreadable
text called cipher text, and then to decrypt it back into a readable format called
plain text.

The practice of encrypting and decrypting data is known as cryptography,
and is a common and effective method of protecting sensitive data. SQL
Server provides many cryptography features such as cell-level encryption and
Transparent Data Encryption (TDE) to protect data at rest. Secure socket layers
(SSL) and transport layer security (TLS) for message transmission as well
as WiFi Protected Access (WPA) for wireless communications are just a few
examples of the use of cryptography in protecting data in transit.

In this chapter, we will explore the keys that are used to perform cryptographic
functions in SQL Server, and their relationship to each other within the key
hierarchy. We will also explore the maintenance considerations in regard to
these keys that will ensure that they provide a consistent and enduring level of
protection, and are always securely backed up. It is through these maintenance
processes, and more expressly through the backup of encryption keys, that you
will avoid the dreaded "lost key" scenario.

We'll explore the different types of key algorithm that can be used to encrypt
the keys and data in our database, and introduce the built-in cryptographic
functions that implement these algorithms in SQL Server. Finally, we'll review
some of the SQL Server catalog views that we can interrogate to obtain values

www.manaraa.com

90

Chapter 4: Encryption Basics for SQL Server

metadata regarding our keys and encrypted data. These functions and views
are used extensively throughout the book, and reference information regarding
their syntax and usage can be found in Appendix A.

Cryptographic Keys

The main character on the cryptographic stage is the key. A key contains
the algorithm, the sequences of instructions which is used in the various
cryptographic functions that SQL Server provides to encrypt and decrypt data.

An encryption function uses the key to describe how the plain text will be
converted into cipher text. Likewise, without the key, the decryption process
cannot occur.

Many types of keys are available to work with the cryptography features and
functions of SQL Server, arranged into a distinct hierarchy.

Cryptographic Key Hierarchy

The keys that are used with the cryptography features of SQL Server are
structured in a layered, or hierarchical, composition. Each layer of keys
encrypts the underlying layer of keys and ultimately the data itself, as shown in
Figure 4-1.

Figure 4-1: Encryption Key Hierarchy.

www.manaraa.com

91

Chapter 4: Encryption Basics for SQL Server

This hierarchy provides a highly secure infrastructure for sensitive data. At
the top of the hierarchy is the service master key, which operates at the SQL
Server Instance level and is used to protect the database master keys, in each
database. This renders the database useless outside of its instance. In addition,
without the use of the service master key to protect the database master key, the
database master key must be explicitly opened prior to its use.

The database master key is used to encrypt the private keys for asymmetric
keys and certificates within a database. By applying this level of protection
these private keys cannot be decrypted outside of the database unless the
database master key is also provided.

Asymmetric keys and certificates are used to protect the other private keys,
symmetric keys and data contained within the database. The symmetric keys
within the database are used to protect other symmetric keys as well as data
within the database. This inner dependency provides a level of security that is
much more resistant to unauthorized access.

Service Master Key

The Service Master Key is encrypted using the machine key from the Windows
Data Protection API (DPAPI), using the password of the Windows Service
Account credentials of the server in which the SQL Server instance is installed.

When an instance of SQL Server is installed, and its service is started for the
first time, the service master key is created. There can be only one service
master key per instance.

The catalog view sys.symmetric_keys can be used to verify the service
master key's existence, as shown in Listing 4-1. The service master key is
identified with the name ##MS_ServiceMasterKey##.
USE master;
GO

SELECT * FROM SYS.SYMMETRIC_KEYS;
GO

Listing 4-1: Querying the symmetric_keys catalog view for the service master
key.

www.manaraa.com

92

Chapter 4: Encryption Basics for SQL Server

The service master key is often used to provide protection to other keys within
a database. It is also a critical component of the Transparent Data Encryption
(TDE) feature of SQL Server 2008.

Database Master Key

This key is unique to each database within the SQL Server instance. If an item
is encrypted using the database master key, it cannot be decrypted outside of
that database. The database master key is not automatically generated when
a database is created, instead it is created using the CREATE MASTER KEY
command, as shown in Listing 4-2.
Use HomeLending;
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyStr0ngP@
ssw0rd2009';
GO

Listing 4-2: Creating a database master key in the HomeLending database.

You can verify the existence of the database master key by querying the
sys.symmetric_keys catalog view, using either the master database or the
database for which the database master key was created. The database master
key is identified with the name ##MS_DatabaseMasterKey##.

A database master key can be used to protect the asymmetric keys, certificates,
as well as sensitive data, contained within the database. The database master
key is protected through the use of the service master key and/or a password.

Asymmetric Key

Asymmetric keys consist of a public key, which is distributed to selected
individuals, and a private key to which access remains highly restricted. In SQL
Server, the public key can decrypt data that has been encrypted by a private key
and vice-versa.

Asymmetric keys can be created within a database through the execution of the
CREATE ASYMMETRIC KEY command.

www.manaraa.com

93

Chapter 4: Encryption Basics for SQL Server

Use HomeLending;
GO

CREATE ASYMMETRIC KEY MyAsymKey
 WITH ALGORITHM = RSA_2048
 ENCRYPTION BY PASSWORD = 'MyStr0ngP@ssw0rd2009';
GO

Listing 4-3: Creating an asymmetric key in the HomeLending database.

Again, you can query sys.asymmetric_keys to verify that the asymmetric
key was successfully created.

Asymmetric keys are used to protect other keys within the database, as well as
sensitive data. This type of key is highly resource intensive and, when used to
protect sensitive data, it should be used with smaller data sets or messages.

Certificates

A certificate is used in much the same way as an asymmetric key in that it
involves a public/private key pair. The primary difference is that a certificate
private key is digitally associated with an individual or device whereas
the asymmetric key is not. The industry standard known as the Internet
X.509 Private Key Infrastructure (PKI) defines the contents and signature
requirements for a valid certificate, and certificate private key.

In SQL Server, a certificate's private key can either be imported from an
external assembly, or generated within the database. In the latter case, this is
called a self-signed certificate. The certificate private key that is generated
within SQL Server is in compliance with the PKI standard.

Listing 4-4 demonstrates the creation of a certificate can be created within a
database using the CREATE CERTIFICATE command.
Use HomeLending;
GO

CREATE CERTIFICATE MySelfSignedCert
 ENCRYPTION BY PASSWORD = 'MyStr0ngP@ssw0rd2009'
 WITH SUBJECT = 'Self Signed Certificate',
 EXPIRY_DATE = '05/31/2010';
GO

Listing 4-4: Creating a certificate in the HomeLending database.

www.manaraa.com

94

Chapter 4: Encryption Basics for SQL Server

Once again, you can query sys.asymmetric_keys to verify the existence of
the certificate in the database in which you attempted to create it.

When creating a certificate, you can specify arguments that define its activation
date (START_DATE) and expiration date (EXPIRY_DATE). These properties
can be used in the management of a certificate's lifecycle. SQL Server does not
enforce the activation and expiry dates that are associated with a certificate.
Additional logic, or the use of the Extensible Key Management (EKM) feature
of SQL Server, must be employed to enforce these dates.

Certificates are used to protect other keys within the database as well as
sensitive data.

Symmetric Key

When an item is encrypted using a symmetric key it must be decrypted using
that same key. The service master key, database master keys and database
encryption keys are all examples of symmetric keys. Additional symmetric
keys can be created within a database using the CREATE SYMMETRIC KEY
command, as shown in Listing 4-5.
Use HomeLending;
GO

CREATE SYMMETRIC KEY MySymKey
 WITH ALGORITHM = AES_256
 ENCRYPTION BY PASSWORD = 'MyStr0ngP@ssw0rd2009';
GO

Listing 4-5: Creating a symmetric key in the HomeLending database.

Querying sys.symmetric_keys, in the context of the database in which
the symmetric key was generated, will verify that the symmetric key was
successfully created.

Symmetric keys are used to protect other keys within the database as well as
sensitive data. Symmetric keys can be protected by other symmetric keys,
asymmetric keys, certificates and passwords.

www.manaraa.com

95

Chapter 4: Encryption Basics for SQL Server

Database Encryption Key

The database encryption key was introduced in SQL Server 2008. This key is
specifically designed to support the Transparent Data Encryption (TDE) feature
of that product. The purpose of this key is to perform the encryption/decryption
process on the physical files and file groups of the database.

The database encryption key is located in the user database while the
asymmetric key, or a certificate, that protects the database encryption key
resides in the master database. This is not only necessary to decrypt the key that
protects the physical files of the database; but also provides the "transparent"
opening of the database encryption key and cryptographic functionality without
the requirement of additional coding to manage it.

Database encryption keys can be created within a database through the
execution of the CREATE DATABASE ENCRYPTION KEY command. Due
to this key’s exclusive use by the Transparent Data Encryption feature of SQL
Server 2008, the specifics of creating and using a database encryption key will
be covered in more detail in Chapter 6.

Passwords

In this day and age the concept of a password is one that is widely understood.
These are the strings of characters used to login to computer systems, check
our e-mail, activate household security systems and access voicemail messages.
In SQL Server, passwords are an option that is available to protect other keys
within a database. For example, the use of a symmetric key requires it to be
opened prior to its reference in cryptographic processes. If a symmetric key is
protected by a password, the string of characters that consists of the protecting
password must be passed for it to be opened.

Passwords are defined with an argument to the key's respective CREATE
commands. Each of the keys covered in this chapter, with the exception of the
service master key, include the ENCRYPTION BY PASSWORD argument in
their creation script examples.

An alternative to using passwords to protect the keys within the database is the
use of symmetric keys, asymmetric keys or certificates. Password protecting
keys improve the portability of keys since they are not dependent upon items

www.manaraa.com

96

Chapter 4: Encryption Basics for SQL Server

that are database or instance specific; although, this portability does allow the
protected item to be restored to another instance and compromised to reveal its
contents therefore reducing its level of security.

Key Maintenance

Cryptographic keys and passwords that protect keys are not a "set-it-and-forget-
it" feature of securing sensitive data; they require periodic maintenance to
ensure that the items that are protected remain at their highest level of security.
Regular maintenance of keys and passwords reduces the occurrences of the
patterns of encryption being discovered through the monitoring of encrypted
values, a practice called crypto-analysis. It reduces the occurrences of key
fatigue, in which bits of plain text begin to appear among the cipher text. In the
unfortunate situation when a key is revealed, improperly disclosed or lost, the
scope of the compromised data is reduced if the entire body of sensitive data is
not protected with the same key.

This maintenance is handled by shepherding each key through a lifecycle,
illustrated in Figure 4-2, which defines when a key is created, used for the first
time in encryption and decryption, expired for encryption purposes, retired
from use and finally eliminated.

Figure 4-2: Key Lifecycle.

Other than providing a means to create new keys and regenerate encrypted data
with a new key, SQL Server does not offer a built-in means to manage keys
through this lifecycle. At first glance, this may seem to be a bad oversight but,
in fact, provision of key management functionality within the database that
contains the encrypted data and keys introduces a potential vulnerability in
data security.

www.manaraa.com

97

Chapter 4: Encryption Basics for SQL Server

Extensible Key Management (SQL Server 2008)

To address the maintenance issue, SQL Server 2008 introduced functionality
called Extensible Key Management (EKM).Through the Microsoft
Cryptographic API (MCAPI) provider, this feature offers the ability to
implement a third party solution, or even a custom built solution, for
generating, backing up, exporting, distributing, retrieving keys and managing
the overall key lifecycle externally from the database. EKM also enables use of
devices such as Hardware Security Modules (HSM), smartcards, and fingerprint
readers to store, configure and manage key lifecycles.

MCAPI cryptographic providers can be created in SQL Server through the
execution of the CREATE CRYPTOGRAPHIC PROVIDER command, as shown
in Listing 4-6. The .dll file provided in this example represents a third party
product that would be used for key management functionality.
Use Master;
GO

CREATE CRYPTOGRAPHIC PROVIDER MyCryptoProvider
 FROM FILE = 'D:\InstanceA\CryptoProvider\CryptA.dll';
GO

Listing 4-6: Creating a cryptographic provider in SQL Server.

You can query sys.cryptographic_providers to verify that the provider
was successfully created.

The use of EKM, by default, is disabled. To begin to use this feature of SQL
Server you will need to first execute the script in Listing 4-7.
sp_configure 'show advanced',1;
GO
RECONFIGURE
GO

sp_configure 'EKM provider enabled',1;
GO
RECONFIGURE
GO

Listing 4-7: Enabling EKM.

www.manaraa.com

98

Chapter 4: Encryption Basics for SQL Server

Once the cryptographic providers have been created and EKM is enabled these
keys can be utilized to perform encryption and decryption of other keys and
data through the standard built-in cryptographic functions that are provided
with SQL Server.

Backing up Keys

Whenever the topic of encryption is being discussed there is a question that
inevitably arises. This question is in regard to how encrypted data can be
recovered if the key is lost or corrupted. The answer is a short one: the data will
be lost. That is unless you have backed up all of the keys that are used in the
encryption effort.

When the database is backed up through the built-in SQL Server database back
up process, some keys are included in the back up file and others are not. The
asymmetric keys and symmetric keys that are created within the database, as
well as the database encryption key that is used in the TDE feature, are all
included in the database backup. The service master key, database master key
and certificates are not included in the database backup. Each of these keys
must be backed up as a separate task, using the following commands:

•	 BACKUP SERVICE MASTER KEY

•	 BACKUP MASTER KEY

•	 BACKUP CERTIFICATE

Each of these commands contains an ENCRYPTED BY PASSWORD option
which protects the backup files with the defined password, as shown in Listing
4-8.

To recover these keys, knowledge of this password is required.
Use master;
GO

-- backup service master key
BACKUP SERVICE MASTER KEY TO FILE = 'D:\InstanceA\Backup\
SMK.bak'
 ENCRYPTION BY PASSWORD = 'MyB@ckUpP@ssw0rd';
GO

Use HomeLending;
GO

www.manaraa.com

99

Chapter 4: Encryption Basics for SQL Server

-- backup database master key
BACKUP MASTER KEY TO FILE = 'D:\HomeLending\Backup\DMK.bak'
 ENCRYPTION BY PASSWORD = 'MyB@ckUpP@ssw0rd';
GO

-- backup certificate
BACKUP CERTIFICATE MySelfSignedCert
 TO FILE = 'D:\HomeLending\Backup\MySelfSignedCert.bak'
 WITH PRIVATE KEY (
 DECRYPTION BY PASSWORD = 'MyStr0ngP@
ssw0rd2009',
 FILE = 'D:\HomeLending\Backup\MySelfSignedCert.pvk',
 ENCRYPTION BY PASSWORD = 'MyB@ckUpP@
ssw0rd');
GO

Listing 4-8: Backing up the service master key, database master key and
certificate.

It is highly recommended that these key backup files are stored on separate
media from the database backup files so that, in the event that the media that
contains the database backup files is stolen or compromised, the data contained
within the database remains secured. The decryption of the data and files
contained in the backup media would require access to the backup media that
contained the key backup files.

Key Algorithms

Keys use a set of instructions that dictate how their cryptographic functions
are to be performed. These instructions are called algorithms. There are several
algorithms available in SQL Server and selecting the optimal algorithm can
be a daunting task, with the high complexity of the mathematical equations
that define these algorithms simply adding to the challenge. Each encryption
project is unique and a suitable algorithm for one project may not be suitable
for another. With the following information you can more confidently select the
algorithm that is best for your situation.

www.manaraa.com

100

Chapter 4: Encryption Basics for SQL Server

Symmetric Key Algorithms

The available symmetric key algorithms in SQL Server fall into two categories:

•	 Block ciphers: This type of algorithm processes a fixed number
of bits of the plain text into the same fixed number of bits of encrypted
text. Decryption of a block cipher reverses the process.

•	 Stream ciphers: This type of algorithm processes a single bit
of plain text into a single bit of cipher text and the results have a
keystream, which is a series of bits that provides the key to the
encryption, appended to its results.

Depending upon the algorithm selected, the resulting block or stream cipher is
a key of a specific length. In general, the longer key lengths result in stronger
encryption; although stronger encryption means more resources when it is
processed.

The following key algorithms are available for symmetric keys in SQL Server:

Advanced Encryption Standard

•	 AES 128: This is a block cipher that processes text in 128 bit blocks.
The result is a key size of 128 bits.

•	 AES 192: This is a block cipher that processes text in 128 bit blocks.
The result is a key size of 192 bits.

•	 AES 256: This is a block cipher that processes text in 128 bit blocks.
The result is a key size of 256 bits.

Data Encryption Standard

•	 DES: This is a block cipher that processes text in 64 bit blocks. The
result is a key size of 56 bits.

•	 DESX: This option in SQL Server is actually a misnomer and when it is
used, Triple_DES_3KEY is actually applied. The DESX option will
not be an option in future versions of SQL Server.

•	 Triple_DES: This is a block cipher that processes text in 64 bit
blocks. The result is a key size of 168 bits. The Triple_DES
option in SQL Server actually returns a 128 bit key size. The
Triple_DES_3KEY option returns a 192 bit key size. Triple_DES
is the algorithm used when a database master key is created.

www.manaraa.com

101

Chapter 4: Encryption Basics for SQL Server

Rivest Cipher

•	 RC2: This is a block cipher that processes text in 64 bit blocks. The
result is a key size of 64 bits.

•	 RC4: This is a stream cipher resulting in a key size between 40-256
bits. This option will be removed from future versions of SQL Server.

•	 128-bit RC4: This is a stream cipher resulting in a key size of 128
bits. This will not be an option in future versions of SQL Server.

Of the three options, AES, DES and RC, the AES group of algorithms is the
strongest. This is reflected in the fact that the US National Security Agency
states that the AES algorithm should be used to protect systems and information
of national security interest.

Due to the inherent weaknesses of the RC4 and 128-bit RC4 algorithms
these options will not be available in future versions of SQL Server. Their use
is therefore discouraged.

Asymmetric Key Algorithms

Asymmetric keys utilize a series of computational methods to derive the private
and public key instead of the block/stream methods identified for symmetric
keys. The following Rivest/Shamir/Adleman (RSA) key algorithms are
available for asymmetric keys in SQL Server:

•	 RSA 512: The result is a private key size of 512 bits.

•	 RSA 1024: The result is a private key size of 1024 bits.

•	 RSA 2048: The result is a private key size of 2048 bits.

When a self-signed certificate is generated within SQL Server, the private key
that is created uses the RSA 1024 algorithm.

It is important to note that the term "key length" for asymmetric keys is
in reference to the portion of the algorithm calculation that is called the
"modulus"; whereas the key length for symmetric keys is the resulting block
or stream cipher. The physical storage size of a key that uses the RSA 512
algorithm is actually 64 bits. This can be a source of confusion when comparing
the key lengths of symmetric and asymmetric keys.

www.manaraa.com

102

Chapter 4: Encryption Basics for SQL Server

Asymmetric algorithms are, in general, stronger than symmetric algorithms; but
they are significantly more resource intensive.

Due to the key length of the RSA 512 algorithm, which is 512 bits, it is not
considered suitable for protecting highly sensitive data.

In addition to encryption, the RSA algorithms are also used as a method of
digitally signing messages. Message signing is the process in which the original
message is encrypted with a private key and attached to the plain text message.
When the message is received, the message is encrypted again through the use
of a public key. The two hash values are then compared. If they are a match, it
is verification that the message has not been altered during transit and verifies
that the sender is authentic.

Hashing Algorithms

Hashing is a process in which plain text is encrypted without the intent of it
being decrypted. The revelation of the plain text value occurs when a string is
encrypted with the same algorithm and returns a positive match. This is also
known as one-way encryption.

The following key algorithms are available for hashing functions in SQL Server:

Message Digest

•	 MD2: The result is a 128 bit hash.

•	 MD4: The result is a 128 bit hash.

•	 MD5: The result is a 128 bit hash.

Secure Hash Algorithm

•	 SHA: The result is a 160 bit hash.

•	 SHA1: The result is a 160 bit hash.

Both offerings within the Secure Hash Algorithm (SHA) series utilize the same
base algorithm to determine its hash value; but the SHA1 option contains an
extra step in its processing to address a security flaw discovered in SHA option.

With the hash length of the SHA being greater than the MD options, the former
are considered to be the more secure.

www.manaraa.com

103

Chapter 4: Encryption Basics for SQL Server

The SignByAsymKey and VerifySignedByAsymKey cryptographic
functions of SQL Server utilize the MD5 algorithm when signing plain text with
an asymmetric key.

Built-In Cryptographic Functions

A function is a database object that contains a block of code that can be
referenced in a command to return either a single value, in which case it is
called a scalar function, or a set of data, in which case it is called a rowset
function. For example, calling the GETDATE() scalar function will return the
current date.

SQL Server offers many built-in functions that can be used for aggregation,
mathematical calculations, date and time handling, text and string handling and
the execution of security tasks. In the interest of securing sensitive data, we will
be focusing on those functions that address cryptographic functionality, which
are:

•	 AsymKey_ID

•	 Cert_ID

•	 CertProperty

•	 DecryptByKeyAutoAsymKey

•	 DecryptByKeyAutoCert

•	 EncryptByAsymKey and DecryptByAsymKey

•	 EncryptByCert and DecryptByCert

•	 EncryptByKey and DecryptByKey

•	 EncryptByPassPhrase and DecryptByPassPhrase

•	 Key_ID

•	 Key_GUID

•	 SignByAsymKey

•	 SignByCert

•	 VerifySignedByAsymKey

•	 VerifySignedByCert

www.manaraa.com

104

Chapter 4: Encryption Basics for SQL Server

Starting in the very next chapter, and throughout the book, we'll be using
several of these built-in cryptographic functions to perform tasks such as the
following:

•	 Transformation of plain text to cipher text (encryption).

•	 Transformation of cipher text to plain text (decryption).

•	 Obtaining of a key's id by passing its name.

•	 Verification of an asymmetric key or certificate's signature.

•	 Return of a certificate property.

For reference information regarding the syntax and usage of each of these
functions, please refer to Appendix A. The ability to execute these built-in
functions will depend upon the user's ownership or permissions to the object
that it is referencing. For example, if the user does not have ownership or
permissions granted to a certificate, they will not be able to encrypt data,
decrypt data or return the certificate's properties through these built-in
functions.

Encryption Catalog Views

Catalog views are a valuable tool in SQL Server, through which the metadata
information of a database or an instance can be queried.

While all users in the PUBLIC server role have permissions to query catalog
views, the results of the queries can differ based upon the user's ownership
and permissions to the objects to which the metadata refers. If ownership or
permissions are not granted to the user performing the query, the metadata for
that object will not be returned.

Various categories of Catalog view are available, allowing you to query
metadata for CLR assemblies, extended properties, schemas, linked servers and
security, to name just a few. In the interest of securing sensitive data, we will
use, in the coming chapters, some of the catalog views that fall in the security
category and that are specific to encryption, which include:

www.manaraa.com

105

Chapter 4: Encryption Basics for SQL Server

•	 Sys.Asymmetric_Keys

•	 Sys.Certificates

•	 Sys.Credentials

•	 Sys.Crypt_Properties

•	 Sys.Cryptographic_Providers

•	 Sys.Key_Encryptions

•	 Sys.OpenKeys

•	 Sys.Symmetric_Keys

For reference information regarding the syntax and usage of each of these
views, please refer to Appendix A. These catalog views can be queried, after
creating their associated objects, as a means of verifying that the execution was
successful, or for gleaning valuable information that can be used elsewhere in
the application, such as a certificate's expiration date.

Generally, these catalog views will be used in conjunction with the EXISTS
command to determine if the item already exists in the database. This
information can then be used to direct the execution of CREATE and ALTER
commands, accordingly. Listing 4-9 shows an example of using a catalog view
in this manner:
USE HomeLending;
GO

IF NOT EXISTS
 (
 SELECT * FROM SYS.ASYMMETRIC_KEYS
 WHERE NAME = 'MyASymKey'
)
 BEGIN
 --[CREATE ASYMMETRIC KEY COMMAND HERE]--
 END;
GO

Listing 4-9: Checking for the existence of a key.

www.manaraa.com

106

Chapter 4: Encryption Basics for SQL Server

Summary

Through this chapter you have gained a basic understanding of the keys used in
the encryption process, the hierarchy used in establishing a layered approach to
protecting the keys, the understanding that keys should be maintained to ensure
their effectiveness and the algorithms available in SQL Server to generate the
keys.

In the following chapters of this book we will explore the details of
implementing and using cell-level encryption, Transparent Data Encryption
and hashing methods; all of which utilize these keys and functions. Specific
examples will be illustrated in context of our sample HomeLending database.

www.manaraa.com

107

Chapter 5: Cell-Level
Encryption

Honeybees collect nectar from various plants and flowers throughout the
landscape and carry it to their hives, in which the nectar is converted into honey
and placed into many hexagonal-shaped cells. Each cell within the hive is
protected with a layer of wax. When the honey is harvested by the beekeeper,
this layer of wax is removed, exposing the honey.

Much like a beehive, a data table consists of many cells. Each of these cells are
grouped and organized in rows and columns. The "sealing wax" for each cell is
the cell-level encryption that protects its contents.

In this chapter we will explore those fundamentals of cell-level encryption
that must be understood prior to its use. We will also walk through an example
that implements a column-level approach to cell-level encryption, using the
HomeLending database, in which the permissions to encrypt and decrypt
the value contained in a column are granted only to the Sensitive_high
database role.

We will also define and create the interface, composed of a view and two stored
procedures, through which users will interact with our encrypted data.

As we approach the world of cell-level encryption, it is important to note the
value and strength of this option. We also should consider that those items that
are fantastic in moderation are often less than spectacular in abundance. Cell-
level encryption can be an expensive data protection option. As noted later in
this chapter, this option requires careful planning and strategic use in order to
reduce its performance impact.

Not all sensitive data requires the granularity and strength that cell-level
encryption offers. Consideration and utilization of other protection methods,
covered in later chapters, in concert with cell-level encryption, are the secret to
achieving the right balance between security and performance.

www.manaraa.com

108

Chapter 5: Cell-Level Encryption

Granularity of Cell-level Encryption

At cell-level, encryption's finest level of granularity, each cell that contains
encrypted data is protected by a key that is specific to the user that performed
the encryption. Decryption is accomplished through the use of the same key, or
a public key, depending on the encryption method applied.

At this level of granularity, the user is presented, in plain text, with only the
data elements on which they have been granted decryption permissions, as
depicted in Figure 5-1.

Figure 5-1: Cell-Level Encryption Granularity.

Alternatively and more commonly, one can apply cell-level encryption at a less
granular level, encrypting all cells within a single column with the same key.
Permissions to decrypt with this key would then be granted to members of a
database role.

The level of granularity that is used is entirely dependent upon the requirements
dictated by the data classification process, its surrounding policies and the fine
balance between security and performance.

Benefits and Disadvantages of Cell-Level
Encryption

Cell-level encryption is a valuable tool in the tool belt of the Database
Administrator; but much like the hammer in the carpenter's tool belt, it is not
suited to all situations. The following review of cell-level encryption's benefits
and disadvantages will provide some aid in the determination of whether this
approach is best suited for your situation.

www.manaraa.com

109

Chapter 5: Cell-Level Encryption

The benefits of cell-level encryption include:

•	 Granular – encryption can be provided at a much finer-grained level
than the entire database. It offers the means to encrypt a single cell
within the table uniquely from another cell.

•	 Secure – the element of data that is encrypted remains in that state,
even when recalled into memory, until it is actively decrypted.

•	 User Specific – users can be granted access to keys that encrypt and
decrypt data that is exclusive to their use.

The disadvantages of cell-level encryption include:

•	 Data type restrictions – implementation of cell-level encryption
requires schema modifications. All encrypted data must be stored with
the varbinary data type.

•	 Expensive table scans – due to the nature in which the values are
encrypted any referential constraints, primary keys and indexes on data
that is encrypted is no longer used. This results in table scans when
encrypted data is referenced in queries.

•	 Processing overhead – the additional processing required for
encrypting and decrypting data has a cost to the overall performance of
the database.

The use of cell-level encryption does present its own unique set of challenges
and costs; but these should not dissuade from the consideration of its use.

The actual performance impact of cell-level encryption will vary depending
upon the environment in which the database resides. The size of the impact
that cell-level encryption has on the database performance will depend on
the server's hardware, such as load balancing, number of processors and
amount of available memory, as well as on non-hardware items such as query
optimization, index placement and overall database design.

In the HomeLending database, we took advantage of normalization to isolate
our sensitive data. It is only accessible, through a view, to a select number of
users that perform decryption. Also, it is through a stored procedure, which also
is available to a very limited number of users, that the encryption functions are
executed. Thus, the performance impact is much less than if it were available to
all users of the database, or if the column remained in a high-traffic table. When
cell-level encryption is strategically implemented, it is a very effective method
of protecting sensitive data at the highest degree of granularity.

www.manaraa.com

110

Chapter 5: Cell-Level Encryption

Special Considerations

The consideration of the benefits and disadvantages of cell-level encryption
is important in the decision to select this method to protect sensitive data.
Additionally, there are also some special considerations that are worthy of note:

Searching Encrypted Data

It is not uncommon for an application to allow authorized users to retrieve
information regarding an individual, based upon a query that uses sensitive data
in its search condition. An example would be a system that recalls a customer
by their Social Security Number or Tax Identification Number.

This scenario presents a paradox that confounds protection efforts of sensitive
data. On one hand, the business requirements demand the ability to recall
individuals through identifiable data. On the other hand, granting the ability to
pass plain text into queries presents a very high risk of disclosing sensitive data
to unauthorized users who are monitoring database activity.

One approach might be to first decrypt the data that is stored in the database
and then compare the plain text to the plain text that is passed in the WHERE
clause. However, this approach does not provide a solution to the passing of
sensitive data as plain text into the query and it will have a severe impact on the
performance of the query, for the following reasons:

•	 The query must perform the decryption for all rows in the table, one-
by-one, in order to determine a match.

•	 Indexes will not be used, so the query execution will result in a table
scan.

An alternative approach would be to encrypt the plain text, using the same
process that generated the cipher text that is stored in the column, before it is
passed into the WHERE clause of the query.

While this may overcome the security issue of passing the plain text value into
the query, it would not provide the expected results. This is due to the fact that
when cipher text is generated through an encryption method in SQL Server, a
salt is appended.

www.manaraa.com

111

Chapter 5: Cell-Level Encryption

A salt is a series of random characters that are added to the plain text prior to
its encryption. In this way, a unique hash is created each time the plain text is
encrypted. This provides protection from the cipher text being revealed through
the observance of its patterns. As a result, the query will never return a match,
even with the underlying plain text being identical.

If efficient searchability, as well as security of the sensitive data, is required
then cell-level encryption will not be the solution for the data in question. In
this case one-way encryption, which will be discussed in more detail in Chapter
7, should be considered as an alternative.

Encrypting Large Plain Text Values

Documents and manuscripts may contain information that would be classified
at a high sensitivity level. The plain text size of these items can often be
very lengthy. The challenge that this type of data presents is that all of the
cryptographic functions for symmetric and asymmetric keys in SQL Server
return a varbinary type with a maximum length of 8,000 bytes. This
translates to a maximum plain text length, for encryption, of 7,943 characters.

When the plain text length exceeds this upper limit, the encryption method
returns a NULL value, so the encryption not only fails but you also lose the data
you were trying to encrypt.

In order to get round this limitation, and use cell-level encryption for large plain
text documents, one option is to chop the data into smaller units. For example,
the manuscript can be encrypted in segments according to natural breaks
that occur in the document, such as chapters. However, this approach would
require additional schema modifications since these separate units will require
relational storage for efficient retrieval.

Another option is to investigate whether or not the large text really does require
encryption because the intent to obfuscate data does not necessarily call for
encryption. As an alternative, consider converting the plain text directly into a
varbinary data type with a length designation of max, using the CONVERT
method. An example of this syntax is:

CONVERT(Varbinary(max),@YourPlainText)

www.manaraa.com

112

Chapter 5: Cell-Level Encryption

The max length designation increases the storage limit from a maximum of
8,000 bytes to 2,147,483,647 bytes. Assuming that the plain text length is
within this size this statement will return a varbinary version of the plain
text that is equal to the full length of the string.

Its resulting value is not discernable to the naked eye. To return this value to
plain text requires only the conversion of the varbinary(max) data to a
varchar(max) data type using the same CONVERT method. This approach
does not provide the same security level as that offered by cell-level encryption,
but it does overcome the data type size limitations associated with the
cryptographic functions, and it may suffice if a limited degree of obfuscation is
required.

Preparing for Cell-Level Encryption

Using the HomeLending database, we will implement cell-level encryption.
For simplicity and clarity we will focus on the Borrower_Identification
table. The majority of the steps noted in this demonstration would be repeated
as needed for each column in any table that contains data classified as "High"
sensitivity.

Before we begin, we will need to examine our database and generate the
requirements that will guide our approach to implementing cell-level
encryption.

Reviewing the Borrower_Identification Table

The Borrower_Identification table contains references to a borrower's
various forms of identification, such as Security Number, Driver's License
Number and Unique Tax Identification Number.

www.manaraa.com

113

Chapter 5: Cell-Level Encryption

Figure 5-2: Borrower_Identification table.

The columns defined in this table are as follows:

•	 Borrower_Identification_ID: The primary key, containing an integer
value that uniquely identifies each row.
Sensitivity class: medium, due to our defined default class.

•	 Borrower_ID: An integer value; this is the foreign key, relating to
rows contained within the Borrower table.
Sensitivity class: medium, due to our defined default class.

•	 Identification_Type_ID: This integer value identifies the type of
identification that is stored in the Identification_Value column.
Through this foreign key to the Identification_Type table the
verbose reference of the identification type, such as "Social Security
Number" can be obtained.
Sensitivity class: medium, due to our defined default class.

•	 Identification_Value: This variable character value contains the plain
text representation of the actual identification value. For example, if the
identification type was a Social Security Number the value contained in
this column would be something like "555-55-5555".
Sensitivity class: high.

Through the grouping of logically similar columns, the use of a unique row
identifier, the absence of repeating columns, the use of foreign keys and the
fact that the columns contained within this table are dependent only upon the
primary key, we can see that this table has achieved third normal form.

This level of normalization has provided a separation of this sensitive data

www.manaraa.com

114

Chapter 5: Cell-Level Encryption

from data that is classified with a lesser level of sensitivity. It also confers the
benefits of our first requirement:

Requirement 1: Permission to Modify Sensitive Data

The only individuals that will update or insert data into tables containing
high sensitivity columns will be members of the Sensitive_high
database role.

The normalization that has been achieved for the
Borrower_Identification table is representative of the
other tables that have been created throughout the HomeLending database.

Database Object Access Control

Direct access to all tables within the HomeLending database has been
denied to the members of the Sensitive_high, Sensitive_medium and
Sensitive_low database roles. An example of the script that was used on
the Borrower_Identification table is shown in Listing 5-1:
USE HomeLending;
GO

DENY ALTER,CONTROL,REFERENCES,DELETE,INSERT,UPDATE,SELECT
 ON dbo.Borrower_Identification
 TO Sensitive_high, Sensitive_medium, Sensitive_low
GO

Listing 5-1: Denying access to the base tables.

Views and stored procedures will be developed that provide the means by
which our users will interact with these tables. By implementing this structure
we can control the access to our data at a more granular level than simply
granting access to entire tables. In addition, this architecture affords us the
opportunity to embed cryptographic functionality, and other logical methods,
into objects such as views and stored procedures.

www.manaraa.com

115

Chapter 5: Cell-Level Encryption

This provides us with our second requirement:

Requirement 2: Access to Base Tables

All users will be denied access to all base tables. Access to data will be
mediated through the use of views and stored procedures.

Key Encryption and Performance

Performance is king when it comes to databases. When transaction volumes are
extremely high, performance is elevated to an even higher level of importance
and security of sensitive data often takes a back seat. Indeed, there is a cost
to implementing encryption. However, our goal within the HomeLending
database is to implement cell-level encryption in such a way that it has minimal
impact on performance.

Asymmetric key encryption is based on a complex algorithm and provides
a very high level of protection. However, with this complexity comes a
commensurately high processing cost.

The strength of symmetric key encryption is dependent upon the length of the
keys that are used. The lengthier keys provide a higher level of security but,
again, come with a higher processing cost. Symmetric key algorithms are in
general less complex and therefore weaker than those for asymmetric keys,
which results in faster processing.

When dealing with large volumes of data and transactions, the tremendous
affect asymmetric keys have on performance is often too high a price to pay
for the stronger encryption that they provide. Therefore, we arrive at our third
requirement:

Requirement 3: Encryption Algorithms

All High sensitivity data will be protected with a symmetric key that
utilizes the AES algorithm. This results in a key length of 128 bits, which is
consistent with specifications defined by regulations, industry standards and
corporate policies.

www.manaraa.com

116

Chapter 5: Cell-Level Encryption

Determining the Key Hierarchy

In SQL Server, the use of symmetric key encryption requires that the key be
opened prior to use. Once a key is opened it remains open until the database
connection is terminated or it is explicitly closed. Leaving a key open for the
duration of a session does provide a level of convenience, but also introduces
a degree of vulnerability to "hacking." As such, it is recommended that you
explicitly close keys as soon as you have finished using them.

Symmetric keys are protected by other keys, certificates or a password. This
prevents the unauthorized use of a key to encrypt and decrypt sensitive data.
This also presents a challenge when implementing and maintaining the related
code that uses the keys.

If a key is protected by a password, the stored procedures that use the OPEN
SYMMETRIC KEY method would either have to:

•	 Obtain the password from another source

•	 Have the password hard-coded into the code

•	 Require the password to be passed as an argument to the
stored procedure.

Obtaining the password from another source would require additional resources
that could negatively affect the performance of our cryptography functionality.
The hard-coding of passwords presents a maintenance nightmare, as well as
security concerns regarding plain text passwords being embedded in our code.
A hacker who is tracing database activity will be able to intercept a plain
text password that is being sent as an argument to a stored procedure. If the
password is passed as a hashed value, that too adds additional resources.

Our understanding of the encryption key hierarchy, discussed in the previous
chapter, will help us overcome this challenge. The service master key, which
was automatically generated when our instance was installed, can be used to
protect a database master key. A database master key can be used to protect a
self-signed certificate, which in turn can be used to protect our symmetric key.
This hierarchy not only provides a seamless and maintainable structure, but it
also reduces the possibility that the sensitive data can be disclosed externally
from the database and instance.

www.manaraa.com

117

Chapter 5: Cell-Level Encryption

Therefore, we arrive at our fourth requirement:

Requirement 4: The Encryption Key Hierarchy

All symmetric keys that are used to protect sensitive data will utilize the
encryption key hierarchy and be protected by a self-signed certificate that
is secured by the database master key. The database master key will be
protected by the service master key.

Implementing Cell-Level Encryption

We are now ready to begin the implementation of our cell-level encryption,
based on our previous requirements. This involves two basic steps:

•	 Implementing and testing the chosen key hierarchy.

•	 Modifying the schema to store the encrypted data.

Implementing the Key Hierarchy

We will implement our key hierarchy based upon requirements 3 and 4.
The service master key is the highest tier in this hierarchy and exists at the
instance level. As previously noted, the service master key of our instance
was created when our instance was setup. The pre-existence of the service
master key can be confirmed by querying the sys.symmetric_keys
catalog view of the master database for the key with the name of ##MS_
ServiceMasterKey##, as shown in Listing 5-2.
USE master;
GO

SELECT
 *
FROM
 sys.symmetric_keys
WHERE
 name = '##MS_ServiceMasterKey##';
GO

Listing 5-2: Confirming the existence of the Service Master Key.

www.manaraa.com

118

Chapter 5: Cell-Level Encryption

Our first step will be to create a database master key for our HomeLending
database. This is accomplished using the CREATE MASTER KEY method. The
ENCRYPTION BY PASSWORD argument is required and defines the password
used to encrypt the key, as shown in Listing 5-3.
USE HomeLending;
GO

CREATE MASTER KEY
 ENCRYPTION BY PASSWORD = 'MyStr0ngP@ssw0rd2009';
GO

Listing 5-3: Creating the Database Master Key.

The requirement of defining the ENCRYPTION BY PASSWORD argument might
be a bit confusing since our intent, based upon requirement 4, is to protect
the database master key with the service master key, instead of a password.
Creating the database master key, as shown in Listing 5-3, not only protects the
database master key with a password; but also automatically adds the additional
protection by the service master key. The use of either key encryption method
is valid for opening the database master key.

If we execute a query against the sys.key_encryptions catalog view, for
the ##MS_DatabaseMasterKey## key , as shown in Listing 5-4, we see that
ENCRYPTION BY MASTER KEY is returned, which is in reference to the service
master key.
USE HomeLending;
GO

SELECT
 b.name,
 a.crypt_type_desc
FROM
 sys.key_encryptions a
 INNER JOIN sys.symmetric_keys b
 ON a.key_id = b.symmetric_key_id
WHERE
 b.name = '##MS_DatabaseMasterKey##';
GO

Listing 5-4: Confirming protection of the database master key by the service
master key.

The next step is to create a self-signed certificate that is protected by the
database master key of our HomeLending database. All certificates created

www.manaraa.com

119

Chapter 5: Cell-Level Encryption

within SQL Server, as opposed to being imported, are self-signed. This
associates the certificate to the database.

Certificates are created using the CREATE CERTIFICATE method. The
arguments of this method include:

•	 Certificate_Name, the name of the certificate in the database and
the means by which we will reference this certificate in our stored
procedures.

•	 WITH SUBJECT, used to provide a descriptive reference to the
certificate, for informational purposes.

Since this certificate will be used to protect the symmetric keys that encrypt and
decrypt the data that has the sensitivity classification of "High", we will name
this certificate MyHighCert, as shown in Listing 5-5.
USE HomeLending;
GO

CREATE CERTIFICATE MyHighCert
 WITH SUBJECT = 'Cert used for sensitive class of high';
GO

Listing 5-5: Creating the MyHighCert self-signed certificate.

An optional argument when creating a certificate is ENCRYPTION BY
PASSWORD. This argument defines a password protection method of the
certificate's private key. In our creation of the certificate we have chosen to not
include this argument; by doing so we are specifying that the certificate is to be
protected by the database master key.

The final key in our hierarchy is the symmetric key that will be used to encrypt
the sensitive data. The choice of a symmetric key is based upon requirement 3,
which is derived from our need for efficiency and strength. The symmetric key
is created through the execution of the CREATE SYMMETRIC KEY method.

The arguments to this method include:

•	 Key_name, the unique name of the key, in the database, and the means
by which we reference this key in our views and stored procedures.

•	 WITH ALGORITHM, which defines the algorithm used that directly
affects the strength of the key.

www.manaraa.com

120

Chapter 5: Cell-Level Encryption

•	 ENCRYPTION BY, which defines the protection method of the key. The
key used in the ENCRYPTION BY argument can be a certificate, another
symmetric key, asymmetric key or a password. We will use our
MyHighCert certificate to achieve the seamless functionality that we
are expecting.

Since this key will be used to protect data with the sensitivity classification of
"High", we will name it HighSymKey1. Since requirement 3 requires a key
length of 128 bits and the use of the AES algorithm, we use AES_128 for the
WITH ALGORITHM argument, as shown in Listing 5-6.
USE HomeLending;
GO

-- A 128 bit Symmetric key (strong)
CREATE SYMMETRIC KEY HighSymKey1
 WITH ALGORITHM = AES_128
 ENCRYPTION BY CERTIFICATE MyHighCert;
GO

Listing 5-6: Creating the HighSymKey1 symmetric key.

Granting Permission to Use the Symmetric Key

Once we have created our symmetric key we will need to define the database
roles that have permissions to use it. This is accomplished through use of the
GRANT method. In order to use this symmetric key, our database role will
require VIEW DEFINITION permissions. Since the Sensitive_high
database role is the only one that we are allowing to encrypt and decrypt
data that has a sensitivity classification of "High", we will grant the VIEW
DEFINITION permissions to that role.
USE HomeLending;
GO

-- Used By Sensitive_high
GRANT VIEW DEFINITION ON SYMMETRIC KEY::HighSymKey1
 TO Sensitive_high;
GO

Listing 5-7: Granting the VIEW DEFINITION permission to the Sensitive_
high database role.

www.manaraa.com

121

Chapter 5: Cell-Level Encryption

Testing the Access to Key Hierarchy

Now that our encryption key hierarchy has been created, we need to verify that
it is effective. The native functionality of the sys.symmetric_keys catalog
view reveals the symmetric keys to which a user either has VIEW DEFINITION
permissions directly granted, or has permission to access through membership
of a database role that has been granted VIEW DEFINITION permissions.

Through the use of EXECUTE AS USER, we can impersonate another user
within the database. The use of REVERT terminates the impersonation and
returns us to our original user account. For our verification, we are selecting a
user that is a member of the Sensitive_high database role, a user that is a
member of the Sensitive_medium database role and a user that is a member
of the Sensitive_low database role.
USE HomeLending;
GO

-- execute as a user who is a member of Sensitive_high role
EXECUTE AS USER = 'WOLFBA';
GO
SELECT * FROM sys.symmetric_keys;
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_medium
role
EXECUTE AS USER = 'KELLEYWB';
GO
SELECT * FROM sys.symmetric_keys;
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_low role
EXECUTE AS USER = 'JONESBF';
GO
SELECT * FROM sys.symmetric_keys;
GO
REVERT;
GO

Listing 5-8: Validating the access to key hierarchy.

www.manaraa.com

122

Chapter 5: Cell-Level Encryption

Successful validation is confirmed by the fact that only the user that is a
member of the Sensitive_high database role will return a row that reflects
the metadata of our HighSymKey1 symmetric key.

Figure 5-3: Results of key hierarchy access validation.

Required Schema Modifications

The binary data type stores the numeric representation of a value based
upon a fixed length, which is set when the data type is used. For example,
use of a binary data type with the fixed length of five would store the value of
"0x4100000000" for the character of "A".

The varbinary data type stores the same numeric representation; but with
a variable length. For example, the value of "A" is stored with the value of
"0x41" while "ABC" is stored as "0x414243". The binary and varbinary
data types both have a maximum length of 8,000 characters.

Cell-level encryption requires the encrypted value to be stored in a
column that is the data type of varbinary since the encryption methods
of EncryptByAsymKey, EncryptByCert, EncryptByKey and
EncryptByPassphrase returns their cipher text in varbinary.

www.manaraa.com

123

Chapter 5: Cell-Level Encryption

Creating the Encrypted Column

Earlier in this chapter, we discussed the levels of granularity that are available
with cell-level encryption. In this exercise, we will be encrypting all cells
within a single column with the same key.

In our review of our Borrower_Identification table, the column that
contains the sensitivity classification of "High" is the Identification_Value
column. Currently, this information is being stored in plain text using the
varchar data type. In order to implement cell-level encryption, based on our
previously-established key hierarchy, we will need to create a column in our
table that will capture the encrypted value as a varbinary data type. Listing
5-9 shows how to accomplish this using the ALTER TABLE method.
USE HomeLending;
GO

ALTER TABLE dbo.Borrower_Identification ADD
 Identification_Value_E varbinary(MAX) NULL
GO

Listing 5-9: Adding a column to store varbinary data.

Since the column by the name of Identification_Value already exists,
we chose to name this new column Identification_Value_E, with the
"E" representing the fact that the column is encrypted. At a later point in this
process we will drop the Identification_Value column, since we do not
want to maintain storage of our sensitive data in plain text.

The NULL constraint to the column definition states that the column can accept
the value of NULL. It is not our intention to allow NULL values in the column
once cell-level encryption is in place; but since we will be adding this column
to existing rows, we will temporarily permit the value of NULL to prevent an
error when creating the column.

It is important to note that the ALTER TABLE method should be executed
when the database is not in use by other users. The ALTER TABLE method
implements a lock on the table during its processing. Large volumes of rows
in a table that is being altered will result in a lengthy execution time and could
result in lock contention, deadlocks and overall poor performance for other
transactions that are attempting to access the table.

www.manaraa.com

124

Chapter 5: Cell-Level Encryption

Populating the Encrypted Column

Now that we have added our new Identification_Value_E column, we
need to populate the column with the encrypted values, based upon the plain
text in the original Identification_Value column and the symmetric key
HighSymKey1.

The script shown in Listing 5-10 opens the HighSymKey1 symmetric
key, allowing us to perform the encryption functions, and then updates the
Identification_Value_E column in the Borrower_Identification
table with the encrypted value, using the EncryptByKey method. An example
of the syntax for this method is as follows:

EncryptByKey(Key_GUID([KeyName]),[Clear_Text],
 [Add_Authenticator],[Authenticator])

We are passing four arguments to the EncryptByKey method in order to
perform the encryption:

•	 Key_GUID: A reference to the symmetric key that is used for
encryption. The Key_GUID system function is used to return the
GUID value of the key based upon its name. This GUID value is
used by this method to locate the symmetric key.

•	 Clear_Text: The plain text value that we wish to encrypt. Since we
are updating based upon the contents of the table, we supply the
reference to the Identification_Value column.

•	 Add_Authenticator: A value indicating whether or not we want
to use an authenticator with the encryption. The value of "1" indicates
that it is to be used, while the value of "0", or the absence of this
argument, indicates that it is not to be used.

•	 Authenticator: The value that is used for the authenticator.

An authenticator is a value that is hashed and appended to the plain text prior
to encryption. This increases the strength of the resulting encrypted value
since decryption requires the passing of the authenticator, if used. In the case
of our sample database we will use the Borrower_ID column value as our
authenticator, since it is a value that will not change for the row and identifies
the borrower that the Borrower_Identification column references.

www.manaraa.com

125

Chapter 5: Cell-Level Encryption

USE HomeLending;
GO

-- Opens the symmetric key for use
OPEN SYMMETRIC KEY HighSymKey1
 DECRYPTION BY CERTIFICATE MyHighCert;
GO

-- Performs the update of the record
UPDATE dbo.Borrower_Identification
 SET Identification_Value_E =
 EncryptByKey(
 Key_GUID('HighSymKey1'),
 Identification_Value,
 1,
 CONVERT(nvarchar(128),Borrower_ID)
)
FROM
 dbo.Borrower_Identification;
GO

-- Closes the symmetric key
CLOSE SYMMETRIC KEY HighSymKey1;
GO

Listing 5-10: Encrypting the data for the Identification_Value_E column.

Note that if an authenticator is used and the value on which the authenticator is
dependent changes, the result will be a failed decryption attempt.

Through the successful execution of the script in Listing 5-10, the plain text
values that are stored in the Identification_Value column will have
been encrypted and stored in the Identification_Value_E column.
The next step in this process is to remove the plain text values, stored in the
Identification_Value column, from the table. We can do this using
the ALTER TABLE method and the DROP COLUMN argument, as shown in
Listing 5-11.
USE HomeLending;
GO

ALTER TABLE dbo.Borrower_Identification
 DROP COLUMN Identification_Value;
GO

Listing 5-11: Dropping the plain text Identification_Value column.

www.manaraa.com

126

Chapter 5: Cell-Level Encryption

One final step is to apply the extended property that reflects the
sensitivity classification of the Identification_Value_E column,
which is "High". This is accomplished through the execution of the
sp_addextendedproperty system stored procedure, as demonstrated
in Listing 5-12.
USE HomeLending;
GO

EXEC sp_addextendedproperty
 @name='Sensitivity_Class',
 @value='High',
 @level0type='SCHEMA',
 @level0name='dbo',
 @level1type='TABLE',
 @level1name='Borrower_Identification',
 @level2type='COLUMN',
 @level2name='Identification_Value_E';
GO

Listing 5-12: Documenting the encrypted column.

Views and Stored Procedures

The sensitive data that is contained within the Borrower_Identification
table is now protected with cell-level encryption. Our next steps are to create
the views and stored procedures via which our users can interact with the
Borrower_Identification table. With the inclusion of cryptographic
functionality to these objects we will need to pay careful attention to the
handling of failed encryption and decryption efforts.

Failed Decryption Handling

Currently, when an attempt to open the symmetric key, and perform decryption,
fails due to the user not having the appropriate permissions to the key, the value
of NULL is returned. This is not very informative to the end user and does not
differentiate a true NULL value from a failed decryption attempt. Therefore, we
will present the following requirement:

www.manaraa.com

127

Chapter 5: Cell-Level Encryption

Requirement 5: Handling unauthorized decryption attempts

When the value of NULL is returned by a failed decryption attempt, it will
be replaced with the value "<SECURED VALUE>".

Data Modification Handling

Protecting the integrity of the encrypted data that is stored in the database is
a critical concern. When a user updates or inserts a row that contains data in
our high sensitivity column, the encryption key will need to be opened. If the
user has the required permission to use the key, encryption will be applied
and the transaction will be committed. However, if the user does not have the
necessary permissions to the encryption key, the value that will be captured in
the encrypted column will be a value of NULL, resulting in the loss of the value
passed to the table.

By restricting insert or update activity to those who have permissions granted
to the encryption key, we ensure that the value that is passed to the encrypted
column contains valid encrypted data. Based on this observation, we define our
final requirement:

Requirement 6: Restricting data modification

Transactions that update or insert rows into a table that contains encrypted
columns are to be performed only by the members of roles who have been
granted permissions to the corresponding keys. For better control of this
requirement all data modifications will occur through stored procedures.

Creating the View

Requirement 2 denies all members of the Sensitive_high, Sensitive_
medium and Sensitive_low permission to directly access the tables in our
database. Access to the data within our tables is to be gained through views.

The script shown in Listing 5-13 creates a view called vwBorrower_
Identification, which will reflect the columns that are contained within
the base table.

www.manaraa.com

128

Chapter 5: Cell-Level Encryption

The reference to the encrypted column, Identification_Value_E,
will utilize the DecryptByKeyAutoCert method to decrypt the data. The
DecryptByKeyAutoCert method performs, in a single command, the
opening of any symmetric keys protected by the MyHighCert certificate,
the decryption of the Identification_Value_E column, including the
specified authenticator, and the closing of the symmetric keys protected by the
MyHighCert certificate.

If a user who calls this view does not have the sufficient permissions granted to
open the symmetric keys that are protected by the MyHighCert certificate, the
decrypted value returned will be NULL. The script uses the COALESCE method
to instead return a value of <SECURED VALUE>, if decryption fails. This
fulfills the requirements of Requirement 5.
USE HomeLending;
GO

CREATE VIEW dbo.vwBorrower_Identification
AS

SELECT
 Borrower_Identification_ID,
 Borrower_ID,
 Identification_Type_ID,
 CONVERT(varchar(250),
 COALESCE(
 DecryptByKeyAutoCert (
 CERT_ID('MyHighCert'),
 NULL,
 Identification_Value_E,
 1,
 CONVERT(nvarchar(128), Borrower_ID)
),
 '<SECURED VALUE>'
)
) AS Identification_Value
FROM
 dbo.Borrower_Identification;
GO

Listing 5-13: Creating the vwBorrower_Identification view.

Please note that we selected to return the column name as
Identification_Value since it is a more intuitive name than the
underlying Identification_Value_E column name.

www.manaraa.com

129

Chapter 5: Cell-Level Encryption

The final step in implementing this view is to grant the appropriate permissions
to it. In Requirement 6, we specified that all data modification activities would
be managed through stored procedures; therefore we will only grant SELECT
permissions to the view.

The Borrower_Information table contains four columns, three of which
have the sensitivity classification of "Medium". Disclosure of the column that
has the sensitivity classification of "High" is managed through the permissions
to the symmetric key that decrypts it. There are no columns with the sensitivity
classification of "Low"; therefore we will grant SELECT permissions only to
the Sensitive_high and Sensitive_medium database roles.
USE HomeLending;
GO

GRANT SELECT ON dbo.vwBorrower_Identification
 TO Sensitive_high, Sensitive_medium;
GO

Listing 5-14: Granting permission to access the view.

Let's now verify that the permissions are effective and that the decryption
performs as expected. As described earlier, we'll use EXECUTE AS USER to
impersonate a user that is a member of the Sensitive_high database role,
a user that is a member of the Sensitive_medium database role and a user
that is a member of the Sensitive_low database role, as shown in
Listing 5-15.
USE HomeLending;
GO

-- execute as a user who is a member of Sensitive_high role
EXECUTE AS USER = 'WOLFBA';
GO
SELECT * FROM dbo.vwBorrower_Identification;
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_medium
role
EXECUTE AS USER = 'KELLEYWB';
GO
SELECT * FROM dbo.vwBorrower_Identification;
GO
REVERT;

www.manaraa.com

130

Chapter 5: Cell-Level Encryption

GO

-- execute as a user who is a member of Sensitive_low role
EXECUTE AS USER = 'JONESBF';
GO
SELECT * FROM dbo.vwBorrower_Identification;
GO
REVERT;
GO

Listing 5-15: Verification of permissions to vwBorrower_Identification.

The result of this verification will reflect that rows were returned for the queries
from the Sensitive_high and Sensitive_medium members; but since
permissions did not exist for the Sensitive_low member the actual rows
will not be returned. Instead the following will appear:

(180593 row(s) affected)
(180593 row(s) affected)
Msg 229, Level 14, State 5, Line 1
The SELECT permission was denied on the object
'vwBorrower_Identification', database 'HomeLending',
schema 'dbo'.

The permissions set for this view are not to be confused with the permissions
set to the keys that are used to encrypt and decrypt. These permissions are
reflected through the actual results that come from the execution of this view.
For example, the WOLFBA user will have the decrypted version of the encrypted
data appearing in their results; while the KELLEYWB user will see the value
"<SECURED VALUE>" in the sensitive column.

Creating the Stored Procedures

Requirement 1 dictates that only members of the Sensitive_high database
role can execute INSERT and UPDATE methods on a table that contains
columns with the sensitivity classification of "High". We have already
established that the Borrower_Identification table contains one of these
columns.

In addition, Requirement 2 dictates that all interaction with tables is to be
performed through views and stored procedures. Requirement 6 dictates that all

www.manaraa.com

131

Chapter 5: Cell-Level Encryption

data modifications occur through stored procedures. In compliance with these
requirements we will create two stored procedures.

The first stored procedure, named Update_Borrower_Identification,
will perform the following:

•	 Open the HighSymKey1 symmetric key with the MyHighCert
certificate through the OPEN SYMMETRIC KEY method.

•	 Execute the UPDATE method while using the EncryptByKey method
to encrypt the value that is passed in the @Identification_Value
argument. This encryption includes the use of the @Borrower_ID
argument as the authenticator.

•	 Catch the occurrence of an error so that the stored procedure fails
gracefully. This is accomplished by the use of the TRY…CATCH method.

•	 Check the HighSymKey1 symmetric key to determine if it is open
before attempting to close it through the sys.openkeys catalog
view. If it is open, the key is closed using the CLOSE SYMMETRIC KEY
method.

Listing 5-16 shows the full code for the stored procedure.
USE HomeLending;
GO

CREATE PROCEDURE dbo.Update_Borrower_Identification
 @Borrower_Identification_ID bigint,
 @Borrower_ID bigint,
 @Identification_Value varchar(250)
AS
BEGIN TRY

 -- Opens the symmetric key for use
 OPEN SYMMETRIC KEY HighSymKey1
 DECRYPTION BY CERTIFICATE MyHighCert;

 -- Performs the update of the record
 UPDATE dbo.Borrower_Identification
 SET Identification_Value_E =
 EncryptByKey(
 Key_GUID('HighSymKey1'),
 @Identification_Value,
 1,
 CONVERT(nvarchar(128),@Borrower_ID)
)
 WHERE

www.manaraa.com

132

Chapter 5: Cell-Level Encryption

 Borrower_Identification_ID =
 @Borrower_Identification_ID;

END TRY
BEGIN CATCH
 -- Returns the error information
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH

-- Closes the symmetric key if open
IF(EXISTS(
 SELECT
 *
 FROM
 sys.openkeys
 WHERE
 key_guid = Key_GUID('HighSymKey1')
)
)
 BEGIN
 CLOSE SYMMETRIC KEY HighSymKey1;
 END
GO

Listing 5-16: The stored procedure through which authorized users can update
sensitive data.

The second stored procedure, named Insert_Borrower_
Identification, will perform the following:

•	 Open the HighSymKey1 symmetric key with the MyHighCert certifi-
cate through the OPEN SYMMETRIC KEY method.

•	 Execute the INSERT method while using the EncryptByKey method
to encrypt the value that is passed in the @Identification_Value
argument. This encryption includes the use of the @Borrower_ID
argument as the authenticator.

•	 Capture the new Borrower_Identification_ID of the inserted
record, which is referenced through the use of @@IDENTITY, and
returns it as the result of the stored procedure.

www.manaraa.com

133

Chapter 5: Cell-Level Encryption

•	 Catch the occurrence of an error so that the stored procedure fails
gracefully. This is accomplished by the use of the TRY…CATCH method.

•	 Check the HighSymKey1 symmetric key to determine if it is open
before attempting to close it through the sys.openkeys catalog view.
If it is open, the key is closed using the CLOSE SYMMETRIC
KEY method.

Listing 5-17 shows the full code for the stored procedure.
USE HomeLending;
GO

CREATE PROCEDURE dbo.Insert_Borrower_Identification
 @Borrower_ID bigint,
 @Identification_Type_ID int,
 @Identification_Value varchar(250)
AS
BEGIN TRY

 -- Opens the symmetric key for use
 OPEN SYMMETRIC KEY HighSymKey1
 DECRYPTION BY CERTIFICATE MyHighCert;

 -- Performs the update of the record
 INSERT INTO dbo.Borrower_Identification
 (
 Borrower_ID,
 Identification_Type_ID,
 Identification_Value_E
)
 VALUES
 (
 @Borrower_ID,
 @Identification_Type_ID,
 EncryptByKey(
 Key_GUID('HighSymKey1'),
 @Identification_Value,
 1,
 CONVERT(nvarchar(128),@Borrower_ID)
)
);

 -- Captures the new Borrower_Identification_ID value
 SELECT @@IDENTITY;

END TRY

www.manaraa.com

134

Chapter 5: Cell-Level Encryption

BEGIN CATCH
 -- Returns the error information
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH

-- Closes the symmetric key if open
IF(EXISTS(
 SELECT
 *
 FROM
 sys.openkeys
 WHERE
 key_guid = Key_GUID('HighSymKey1')
)
)
 BEGIN
 CLOSE SYMMETRIC KEY HighSymKey1;
 END
GO

Listing 5-17: The stored procured through which authorized users can insert
sensitive data.

The final step in implementing these stored procedures is to grant the
appropriate permissions to them. Requirement 6 allows the INSERT or
UPDATE methods to be executed, if an encrypted column exists; only when the
database role that performs the INSERT or UPDATE method has permissions
granted to the key that performs the encryption.

The encrypted column in the Borrower_Information table,
Information_Value_E, is encrypted by the HighSymKey1 symmetric key
to which only the Sensitive_high database role has permissions to utilize;
therefore, we will grant EXECUTE permissions to our two stored procedures
only to the members of the Sensitive_high database role, as shown in
Listing 5-18.
USE HomeLending;
GO

-- Grant Execute Permissions to Sensitive_high database
role
GRANT EXECUTE ON dbo.Update_Borrower_Identification

www.manaraa.com

135

Chapter 5: Cell-Level Encryption

 TO Sensitive_high;
GO

-- Grant Execute Permissions to Sensitive_high database
role
GRANT EXECUTE ON dbo.Insert_Borrower_Identification
 TO Sensitive_high;
GO

Listing 5-18: Granting, to the sensitive_high role, permission to execute the
two stored procedures.

Summary

Through this demonstration we have successfully implemented cell-level
encryption for the Borrower_Identification table of our HomeLending
database. We have encrypted one column of one table among many more,
throughout our database, that beg for similar attention.

•	 The application of cell-level encryption employs all of the concepts
that have been presented in the previous chapters.

•	 Through the understanding of sensitive data we executed the data
classification process.

•	 The extended properties that were created through the data
classification process were utilized to identify the columns that must
have the cell-level encryption applied.

•	 Through the implementation of our database roles that define the
privileges to sensitive data, we were able to precisely control access to
data and cryptography functionality.

•	 The schema design that we implemented that segregated our
sensitive data from data of lesser sensitivity allowed us to create views
and stored procedures that manage functionality at a very granular level.

•	 Through our understanding of the key hierarchy and complexities of
encryption key algorithms, we were able to implement a very
manageable, seamless and efficient solution for executing
cryptographic functions.

Now let's explore how encryption can provide protection to the entire database
with the Transparent Data Encryption (TDE) feature of SQL Server 2008.

www.manaraa.com

136

Chapter 6: Transparent Data
Encryption

Keyless entry for automobiles was first introduced by American Motors
Corporation in 1983 and, today, there are a variety of methods that are available
that permit the user to gain access to their automobile without inserting a
physical key into the door lock. These include pushing a button on a device that
transmits a radio frequency, entering a code into a key pad located beneath the
driver's side door handle, or possessing a device, called a fob, that is detected
by the automobile's security system.

Of these devices, only the fob offers transparency to the owner of the vehicle.
The fob is recognized by the security system and the door is automatically
unlocked; in other words, the fob holder is granted access to the vehicle without
any distinguishable action required on his or her part. If a person who does not
possess the fob attempts to open the door of the automobile, the door remains
locked, denying access into the vehicle.

The experience of the car owner in possession of a fob is similar to the
experience of the user attempting to gain access to a database in which
Transparent Data Encryption (TDE) has been enabled. TDE is distinct from
other techniques discussed in this book in that it secures data by encrypting
the physical files of the database, rather than the data itself. The data files for
a given database are encrypted using a database encryption key in the user
database. This key references a key hierarchy in the Master database, and this
dependency prevents the data files from being viewed outside their instance.

Therefore, a valid user can access the decrypted contents of the database files
without any distinguishable actions, and without even being aware that the
underlying data files are encrypted. However, a would-be data thief, who has
obtained access to the data files through a stolen backup file, will find he or
she is unable to access the data it contains. Overall, this is a straightforward,
low-impact feature that has great security benefits; the only caveat being that it
requires SQL Server 2008 Enterprise Edition.

In this chapter we will explore the considerations of TDE that must be
understood prior to its use. We will also walk through an example of
implementing and validating TDE using the HomeLending database. Finally,
we will cover the process of removing TDE, should the need arise.

www.manaraa.com

137

Chapter 6: Transparent Data Encryption

How TDE Works

Transparent Data Encryption (TDE) was introduced in SQL Server 2008, as a
feature of the Enterprise Edition of that product. The Developer Edition of SQL
Server 2008 also offers TDE, but its license limits its use to development and
testing only.

As noted above, TDE's specific purpose is to protect data at rest by encrypting
the physical files of the database, rather than the data. These physical files
include the database file (.mdf), the transaction log file (.ldf) and the backup
files (.bak).

The protection of the database files is accomplished through an encryption
key hierarchy that exists externally from the database in which TDE has been
enabled. The exception to this is the database encryption key, which was
introduced to the database encryption key hierarchy (see Chapter 4) specifically
to support the TDE feature, and is used to perform the encryption of the
database files.

In Figure 6-1, the key hierarchy, and their required location of each key, is
illustrated. The service master key exists at the instance level. The database
master key and certificate at the Master database are used to protect the
database encryption key that is located at the user database, which is the
HomeLending database in our example. The database encryption key is then
used to decrypt the database files of the user database.

Figure 6-1: TDE Encryption Key Hierarchy.

The dependency upon the encryption key hierarchy in the Master database,
as well as the instance, prevents the database files from being restored to an
instance of SQL Server that does not contain the referenced keys. This level

www.manaraa.com

138

Chapter 6: Transparent Data Encryption

of protection is a great comfort if a backup tape that contains your database
backup files were to fall into the wrong hands.

Additionally, the encryption of the backup files prevents the plain text values
that are contained within the database being disclosed by opening the backup
files using a text editor and scanning its contents. The details regarding this
scenario will be covered later in this chapter.

Benefits and Disadvantages of TDE

Comparing TDE to cell-level encryption is a bit like comparing apples to
oranges. They are solutions for different challenges. TDE offers general
protection to the database while cell-level encryption offers specific protection
to data. I would encourage you to consider using TDE in conjunction with other
encryption and obfuscation methods, for a layered approach to protection. To
determine whether or not TDE should be part of your protection strategy for
sensitive data, consider the following benefits and disadvantages.

Benefits

•	 Implementation of TDE does not require any schema modifications.

•	 Since the physical data files and not the data itself are encrypted, the
primary keys and indexes on the data are unaffected, and so optimal
query execution can be maintained.

•	 The performance impact on the database is minimal. In their white
paper titled "Database Encryption in SQL Server 2008 Enterprise
Edition", Microsoft estimates the performance degradation for TDE to
be 3–5%, while cell-level encryption is estimated to be 20–28%. Of
course, the impact well may vary, depending upon your specific
environment, and volume of data.

•	 The decryption process is invisible to the end user.

Disadvantages

•	 Use of TDE renders negligible any benefits to be gained from
backup compression, as the backup files will be only minimally com-
pressed. It is not recommended to use these two features together on
the same database.

www.manaraa.com

139

Chapter 6: Transparent Data Encryption

•	 TDE does not provide the same granular control, specific to a user or
database role, as is offered by cell-level encryption.

•	 TDE is available only with SQL Server 2008, Enterprise Edition and so
will probably not be available to all installations within
your environment.

Considerations when Implementing TDE

Prior to implementing TDE, there are several issues to take into consideration,
discussed over the following sections.

Master Key Interdependency

The process of implementing TDE involves the creation of a database master
key and certificate, or asymmetric key, on the Master database. Only one
database master key can be created for a given database so any other user
databases that share the instance, and have TDE implemented, will share a
dependency upon the Master database master key.

This interdependency increases the importance of performing a backup of the
Master database master key to ensure the continued accessibility of the TDE-
enabled databases.

Performance Impact on TempDB

When TDE is initially implemented, the physical file of the TempDB system
database is also encrypted. Since the TempDB database contains temporary
data from the TDE-enabled database, its encryption is required to maintain full
protection by this feature; otherwise the information that is temporarily stored
in the TempDB database from the TDE enabled databases would be exposed
through the physical files of TempDB.

The TempDB database is used by all user and system databases in the
instance to store temporary objects, such as temporary tables, cursors
and work tables for spooling. It also provides row versioning and the
ability to rollback transactions.

www.manaraa.com

140

Chapter 6: Transparent Data Encryption

Once the TempDB database is encrypted, any reference and use of this database
by other databases, regardless of whether they have TDE enabled or not, will
require encryption and decryption. While this encryption and decryption of the
TempDB database files remains transparent to the user, it does have a minimal
performance impact on the entire instance. Microsoft has estimated the entire
impact of TDE on a SQL Server instance to be 3–5% depending on the server
environment and data volume.

TDE and Decryption

TDE is designed to protect data at rest by encrypting the physical data files
rather than the data itself. This level of protection prevents the data and backup
files from being opened in a text editor to expose the file's contents.

TDE encryption occurs prior to writing data to disk, and the data is decrypted
when it is queried and recalled into memory. This encryption and decryption
occurs without any additional coding or data type modifications; thus it’s
transparency. Once the data is recalled from disk, into memory, it is no longer
considered to be at rest. It has become data in transit, which is beyond the
scope of this feature. As such, alongside TDE, you should consider applying
additional supporting layers of protection to your sensitive data, to ensure
complete protection from unauthorized disclosure. For example, you may wish
to implement, in addition to TDE, encrypted database connections, cell-level
encryption, or one-way encryption. For additional data in transit protection
that is required, externally from the database, you may need to consult with, or
defer to, your Network Administration team.

Backup and Recovery

As noted previously, TDE prevents the backup files from being opened by a
plain text editor. It also limits the recovery of the database backup file to the
instance that holds the encryption key hierarchy that was in existence at the
time the backup was created.

As illustrated in Figure 6-1, backup files of databases with TDE enabled
are encrypted using a key hierarchy that includes the service master key
of the SQL Server instance, the database master key and certificate for the
Master database.

www.manaraa.com

141

Chapter 6: Transparent Data Encryption

Despite this dependency, none of these keys are included with the standard
database backup, and must be backed up separately via the following
commands (see Listing 4-8, in Chapter 4, for example usage):

•	 BACKUP SERVICE MASTER KEY to backup of the service
master key.

•	 BACKUP MASTER KEY to backup of a database master key.

•	 BACKUP CERTIFICATE to backup the certificate.

This behavior is one of the security benefits of TDE. In order to restore the
encrypted data to another instance of SQL Server, a user needs to recover
the service master key backup file, the Master database master key backup
file and the Master database certificate private key, prior to recovering the
database backup file.

The database encryption key that is created in the user database, in which TDE
has been implemented, is included in the standard database backup. It is stored
in the boot record of the database file so that it can be accessed and used to
decrypt the user database.

When the service master key and database master key are backed up, it is
recommended to store their backup files in a separate location from the
database files. This separation will ensure continued protection of the encrypted
data in the event that the database backup media is stolen or compromised.

TDE and Replication

If the TDE-enabled database is part of a replication setup, the subscribing
database must also have TDE implemented. The data that is traveling between
the databases will be in plain text and is vulnerable to unauthorized disclosure.
A method of encrypting connections, such as secure socket layers (SSL) or
Internet protocol security (IPSec), is recommended.

TDE and FileStream Data

The FILESTREAM data type stores large unstructured objects, such as
documents and images, in an integrated physical file that is separate from

www.manaraa.com

142

Chapter 6: Transparent Data Encryption

the database file. When TDE is implemented on a user database that contains
FILESTREAM data, the filestream files remain unencrypted.

Implementing TDE

In this section, we will implement TDE using the HomeLending database.
Our TDE implementation, in comparison to cell-level encryption, will be
very simple. There are no modifications to the schema required, there are no
permissions that need to be granted to database users and roles in order to
use TDE, and there are no additional database objects that must be created to
perform the encryption and decryption methods.

On the other hand, the person performing the implementation of TDE does
require specific permissions; namely CONTROL permissions on the Master
and HomeLending databases. It is recommended to perform this process while
the database is not in use by other users.

Backup before Proceeding

It is a general best practice to backup a database prior to making modifications.
However, it is especially important when implementing TDE, in order to ensure
that, should the TDE implementation need to be reversed, you can cleanly
recover the database in its original form.

In addition, by performing a database backup, a new checkpoint will be
established in the transaction log. The creation of a checkpoint truncates
all inactive items in your transaction log prior to the new checkpoint. This
will ensure that your transaction log is free from unencrypted items, prior
to the TDE implementation. Listing 6-1 shows the backup command for the
HomeLending database.

www.manaraa.com

143

Chapter 6: Transparent Data Encryption

USE HomeLending;
GO

BACKUP DATABASE HomeLending
 TO DISK = 'D:\HomeLending\Backup\HomeLending.bak'
 WITH NOFORMAT,
 INIT,
 NAME = 'HomeLending-Full Database Backup',
 SKIP,
 NOREWIND,
 NOUNLOAD,
 STATS = 10
GO

Listing 6-1: Backing up the HomeLending database, prior to TDE.

With the backup successfully completed, we can begin the process of
implementing TDE.

The Master Database

Our first step is to create a database master key for our Master database, using
the CREATE MASTER KEY method, as shown in Listing 6-2.
USE master;
GO

CREATE MASTER KEY
 ENCRYPTION BY PASSWORD = 'MyStr0ngP@ssw0rd2009';
GO

Listing 6-2: Creating the database master key in the Master database.

Notice that, while ENCRYPTED BY PASSWORD is a required argument to the
method, our intent, as in Chapter 5, is to instead protect the database master key
with the service master key. This option is automatically available to us, upon
creation of the database master key.

A search against the sys.key_encryptions catalog view for the ##MS_
DatabaseMasterKey## key, as shown in Listing 6-3, returns ENCRYPTION
BY MASTER KEY, in reference to the service master key.
USE master;
GO

www.manaraa.com

144

Chapter 6: Transparent Data Encryption

SELECT
 b.name,
 a.crypt_type_desc
FROM
 sys.key_encryptions a
 INNER JOIN sys.symmetric_keys b
 ON a.key_id = b.symmetric_key_id
WHERE
 b.name = '##MS_DatabaseMasterKey##';
GO

Listing 6-3: Confirming protection of the database master key by the service
master key.

The next step is to create a self-signed certificate that is protected by the
database master key of our Master database. All certificates created within
SQL Server, as opposed to being imported, are self-signed. This associates the
certificate to the database.

Certificates are created using the CREATE CERTIFICATE method, as described
in the previous chapter in Listing 5-5. Since this certificate is located in the
Master database and will be used to protect the database encryption key of our
HomeLending database, we will name this certificate MasterCert, as shown
in Listing 6-4.
USE master;
GO

CREATE CERTIFICATE MasterCert
 WITH SUBJECT = 'Cert used for TDE';
GO

Listing 6-4: Creating the MasterCert self-signed .

As for Listing 5-5, by omitting the ENCRYPTION BY PASSWORD argument, we
are specifying that the certificate is to be protected by the database master key.

At this point in the process you should perform a backup of the certificate with
its private key, using the BACKUP CERTIFICATE command shown in Listing
6-5. In the event that the HomeLending database needs to be restored, this
certificate and its private key will be required.
USE master;
GO

BACKUP CERTIFICATE MasterCert
 TO FILE = 'D:\HomeLending\Backup\MasterCert.bak'

www.manaraa.com

145

Chapter 6: Transparent Data Encryption

 WITH PRIVATE KEY (
 FILE = 'D:\HomeLending\Backup\MasterCert.pvk',
 ENCRYPTION BY PASSWORD = 'MyB@ckUpP@ssw0rd');
GO

Listing 6-5: Backing up the MasterCert certificate.

Since our MasterCert certificate is protected by the Master database master
key, the DECRYPTION BY PASSWORD argument is not included in the WITH
PRIVATE KEY argument of this command.

The User Database

Having created the database master key and the MasterCert certificate in
the Master database, we are ready to create the database encryption key for
the HomeLending database which we will use to perform the cryptographic
functions for the physical files of our database.

The database encryption key is created using the CREATE DATABASE
ENCRYPTION KEY command. The arguments to this method include:

•	 WITH ALGORITHM: Specifies the algorithm used, which in turn dic-
tates the strength of the key.

•	 ENCRYPTION BY: Defines the protection method of the key. The
key used in the ENCRYPTION BY argument can be a certificate or an
asymmetric key that is located in the Master database.

Listing 6-6 shows the exact command used for the HomeLending database's
database encryption key.
USE HomeLending;
GO

CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = AES_128
 ENCRYPTION BY SERVER CERTIFICATE MasterCert;
GO

Listing 6-6: Creating the HomeLending database encryption key.

The AES_128 option specifies Advanced Encryption Standard (AES) with
a 128 bit key length, and we protect the database encryption key with the
MasterCert certificate that was created in the Master database.

www.manaraa.com

146

Chapter 6: Transparent Data Encryption

The final step in the setup process of TDE is to enable it. This is accomplished
by executing the ALTER DATABASE command with the SET ENCRYPTION
ON argument.
USE HomeLending;
GO

ALTER DATABASE HomeLending
 SET ENCRYPTION ON;
GO

Listing 6-7: Enabling TDE.

At this point, an encryption scan occurs, which is the process by which the
physical files of the database are scanned and encrypted. Included in this scan
process are the database files, TempDB database files and transaction log files.

Transaction log files contain information that is used to maintain data integrity
and are used in the restoration process. Within these files are a series of smaller
units called virtual log files (VLFs). These VLFs contain records that pertain to
transactions within the database file. Prior to the implementation of TDE, these
VLFs contain unencrypted data. During the encryption scan any pages that
have been in the buffer cache and modified, known as dirty pages, are written
to disk, a new VLF is created and the prior inactive VLFs are truncated. This
results in a transaction log that only contains encrypted data.

The duration of the encryption scan will vary depending upon the size of
the database files. Once the process has completed, the encryption_
state column in the sys.dm_database_encryption_keys dynamic
management view will reflect the encryption state of "encrypted," and will
show the value of "3" in this column, for our HomeLending database.

Verifying TDE

Once the implementation of TDE is complete there are a few ways you can
verify that these steps indeed succeeded.

www.manaraa.com

147

Chapter 6: Transparent Data Encryption

Using Dm_Database_Encryption_Keys

Dynamic management views (DMV) are built-in views that provide metadata
regarding the settings, health and properties of SQL Server instances and
databases. The sys.dm_database_encryption_keys DMV presents
information about the database encryption keys used in a given database, as
well as the encryption state of the database.

NOTE:

Database encryption keys are only utilized for the benefit of the TDE
feature of SQL Server 2008; therefore this DMV is not available in SQL
Server 2005.

Through the use of a query in which the sys.dm_database_encryption_
keys DMV and the sys.databases catalog view are joined through the
database_id column, we are able to determine the success of the TDE
implementation, as demonstrated in Listing 6-8.
USE master;
GO

SELECT
 db.name,
 db.is_encrypted,
 dm.encryption_state,
 dm.percent_complete,
 dm.key_algorithm,
 dm.key_length
FROM
 sys.databases db
 LEFT OUTER JOIN sys.dm_database_encryption_keys dm
 ON db.database_id = dm.database_id;
GO

Listing 6-8: Verifying TDE using dm_database_encryption_keys.

A return value of "1" for the is_encrypted column of the sys.databases
catalog view indicates that the database has been encrypted through TDE.

The value of the encryption_state column from the sys.dm_
database_encryption_keys DMV reflects whether or not the encryption
process is complete. A value of "3" indicates that the encryption process is

www.manaraa.com

148

Chapter 6: Transparent Data Encryption

complete. A value of "2" in this column indicates that the encryption process is
in progress. The percent_complete column from the same DMV indicates
the progress of the encryption process. This column only reflects a value other
than "0" when the database encryption state is in the process of changing (being
encrypted or decrypted).

In this sample query, I added the key_algorithm and key_length columns
to illustrate an interesting dynamic in regard to the TempDB database, as shown
in the results in Table 6-1.

name is_
encrypted

encryption_
state

percent_
complete

key_
algorithm

key_
length

tempdb 0 3 0 AES 256
HomeLending 1 3 0 AES 128
model 0 NULL NULL NULL NULL
master 0 NULL NULL NULL NULL
msdb 0 NULL NULL NULL NULL

Table 6-1: Results of TDE verification query.

As previously noted, the encryption of the TempDB is a byproduct of
implementing TDE on any given database within an instance of SQL Server.
The is_encrypted column for our HomeLending database contains the
value of "1" which indicates that it has been successfully encrypted; but the
TempDB contains the value of "0", while the values in the other columns
indicate that encryption has taken place. This is because the TempDB database
is encrypted outside of the established TDE key hierarchy.

This is further emphasized by the algorithm that is used to encrypt the TempDB
database. As you will recall, the creation of the database encryption key for the
HomeLending database was designated as AES_128, which uses a key length
of 128 bits. The results of this query show that the TempDB database is actually
using a key length of 256 bits.

The reason for the separate encryption process lies in the inherent behavior of
the TempDB database; when the SQL Server instance is stopped and started the
TempDB database is dropped and recreated. This can be verified by performing
the following steps:

•	 Stop the SQL Server instance.

•	 Start the SQL Server instance.

www.manaraa.com

149

Chapter 6: Transparent Data Encryption

•	 Execute SELECT * FROM SYS.DATABASES, using the
Master database.

The result of the third step will reveal that the column titled CREATE_DATE for
the TempDB database will be approximately the date and time that you restarted
the SQL Server instance. When the sys.dm_database_encryption_
keys DMV is executed, the database encryption key for the TempDB database
will still be included in the results and the column titled CREATE_DATE will
also reflect the time that the instance was restarted. This illustrates that when
the TempDB database is recreated so is its database encryption key.

At first glance the comparison of the CREATE_DATE columns of the sys.
databases and sys.dm_database_encryption_keys DMV may raise
concern since they do not match; but consider that the sys.dm_database_
encryption_keys DMV reflects the date and time in Greenwich Mean Time
(GMT) while the sys.databases catalog view reflects the date and time
according to your time zone. Depending on your location this may appear to be
in the future or in the past. In my case, being on Eastern Standard Time (EST)
in the United States the sys.dm_database_encryption_keys DMV
CREATE_DATE is five hours into the future.

Verification through Backup and Recovery

Another method of verifying the success of a TDE implementation is to
perform a backup of the database, after TDE has been enabled, as shown in
Listing 6-9. When doing so, make sure not to overwrite the backup file that was
created prior to implementing TDE.
USE HomeLending;
GO

BACKUP DATABASE HomeLending
 TO DISK = 'D:\HomeLending\Backup\HomeLending_PostTDE.bak'
 WITH NOFORMAT,
 INIT,
 NAME = 'HomeLending-Full Database Backup',
 SKIP,
 NOREWIND,
 NOUNLOAD,
 STATS = 10
GO

Listing 6-9: Backing up the HomeLending database after TDE is implemented.

www.manaraa.com

150

Chapter 6: Transparent Data Encryption

The next step is to compare the contents of the pre-TDE and post-TDE
backup files, by opening both files up in a simple text editor such as Notepad,
Wordpad or Textpad. We can perform a search within the pre-TDE backup file
for the plain text of a known sensitive data value. For example, we will search
for the value of "319726 Rocky Fabien Avenue" which is contained in the
Borrower_Address table in the HomeLending database.

This search reveals the searched value in plain text, as shown in Figure 6-2.
In addition, if you were to manually scan through the backup file, you would
find that the metadata of our database objects, such as tables, views, stored
procedures and user defined functions are revealed in plain text.

Figure 6-2: Backup File – Unencrypted.

The same search on our post-TDE backup file will result in the message box
shown in Figure 6-3, stating that it cannot find the requested value. This is
because the entire backup file, including the metadata of our database objects,
has been encrypted and no longer contains any plain text values.

Figure 6-3: Search Results in Encrypted Backup File.

www.manaraa.com

151

Chapter 6: Transparent Data Encryption

One final test in regard to the backup file is to attempt to restore the post-TDE
backup file onto a different instance than the one in which the HomeLending
database resides, using the RESTORE DATABASE command, as shown in
Listing 6-10.
USE master;
GO

RESTORE DATABASE HomeLending
 FROM DISK = 'D:\HomeLending\Backup\HomeLending_PostTDE.
bak'
 WITH FILE = 1,
 NOUNLOAD,
 REPLACE,
 STATS = 10
GO

Listing 6-10: Attempting to restore the HomeLending database.

This attempt will return an error message that states that the certificate at the
Master database level, in which the HomeLending database encryption key
is protected, does not exist; therefore the attempt will fail.

Msg 33111, Level 16, State 3, Line 2
Cannot find server certifiate with thumbprint…

Msg 3013, Level 16, State 3, Line 2
RESTORE DATABASE is terminating abnormally

Using EXECUTE AS

Finally, we can perform a test to determine that the data that is contained within
the encrypted HomeLending database files can be read by valid users of the
database, as shown in Listing 6-11. As described previously in Chapter 5, we
use EXECUTE AS USER to impersonate various users within the database and
test their ability to access the encrypted data. The use of REVERT terminates the
impersonation and returns us to our original user account.
USE HomeLending;
GO

-- execute as a user who is a member of Sensitive_high role
EXECUTE AS USER = 'WOLFBA';

www.manaraa.com

152

Chapter 6: Transparent Data Encryption

GO
SELECT * FROM dbo.Borrower;
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_medium
role
EXECUTE AS USER = 'KELLEYWB';
GO
SELECT * FROM dbo.Borrower;
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_low role
EXECUTE AS USER = 'JONESBF';
GO
SELECT * FROM dbo.Borrower;
GO
REVERT;
GO

Listing 6-11: Verifying TDE using EXECUTE AS queries.

Each query in the above script successfully returns the contents of the
Borrower table within the HomeLending database. This demonstrates
that the automatic decryption is functioning as expected, and verifies that
permissions to the appropriate database objects are not affected.

Please note that if the exercises for implementing cell-level encryption,
presented in Chapter 5, have been completed within the same database that
is being used in the TDE exercises, the query in Listing 6-11 will fail since
permissions to all tables were denied to the Sensitive_high, Sensitive_
medium and Sensitive_low database roles. This can be overcome by
granting SELECT permissions to these database roles to the Borrower table.

Reversing the Implementation of TDE

It was once said that the only things certain in life are death and taxes. It could
be argued that change is another certainty. You may find yourself in a situation
where TDE has been implemented, you have validated that it works, are ready
for users to begin using the newly-encrypted database and then, lo-and-behold,

www.manaraa.com

153

Chapter 6: Transparent Data Encryption

a request to reverse TDE comes your way.

Boss: "I would like you to proceed with implementing TDE
immediately …"

DBA: "Cool, I'll get right on it."
(DBA Implements TDE)

Boss: "Hey, as I was saying yesterday: I would like you to proceed
with implementing TDE next week after our presentation to the
Technology Committee."

DBA: "No problem … ah …"
(Begin reversal process)

If, at the time this request comes your way, no transactions have been
performed on the encrypted database then you can reverse the TDE
implementation using the following steps:

1.	 Restore the backup file of the HomeLending database that was cre-
ated before TDE was implemented.

2.	 Drop the certificate that was created in the Master database. This
should only be done if there are no other user databases in the instance
that have been TDE-enabled. If there are other user databases in the
instance that have TDE enabled, you will want to leave the Master
database items untouched.

3.	 Drop the database master key that was created in the Master data-
base. This should only be done if there are no other user databases in
the instance that have TDE enabled. Otherwise, you will want to leave
the Master database items untouched.

4.	 Restart the instance in which the HomeLending database resides. If
there are not any other user databases on the instance that have TDE
implemented, this action will force the recreation of the TempDB
database in an unencrypted format.

www.manaraa.com

154

Chapter 6: Transparent Data Encryption

Listing 6-12 shows the code to implement these steps.
USE master;
GO

RESTORE DATABASE HomeLending
 FROM DISK = 'D:\HomeLending\Backup\HomeLending.bak'
 WITH FILE = 1,
 NOUNLOAD,
 REPLACE,
 STATS = 10;
GO

DROP CERTIFICATE MasterCert;
GO

DROP MASTER KEY;
GO

-- Restart Instance Though SQL Server Management Studio:
-- Right-Click instance and click on "Restart" option.

Listing 6-12: Reversing TDE when no transactions have occurred.

If the request to reverse the implementation of TDE comes after transactions
have occurred, or a copy of the pre-TDE backup file is no longer available, the
following steps can be performed:

1.	 Alter the HomeLending database to have the ENCRYPTION
option set to the value of OFF.

2.	 Wait until the decryption process is complete. Use the
sys.dm_database_encryption_keys DMV to determine
its status. A value of "1" returned in the encryption_status
column indicates that the decryption is complete.

3.	 Drop the database encryption key for the HomeLending database.

4.	 Restart the instance in which the HomeLending database resides. If
there are not any other user databases on the instance that have TDE
implemented, this action will force the recreation of the TempDB
database in an unencrypted format.

www.manaraa.com

155

Chapter 6: Transparent Data Encryption

Listing 6-13 shows the code to implement these steps.
USE HomeLending;
GO

ALTER DATABASE HomeLending
 SET ENCRYPTION OFF;
GO

-- Before proceeding, wait until the decryption process is
complete.
-- Use the sys.dm_database_encryption_keys dmv to determine
this.

DROP DATABASE ENCRYPTION KEY;
GO

-- Restart Instance Though SQL Server Management Studio:
-- Right-Click instance and click on "Restart" option.

Listing 6-13: Reversing TDE after transactions have occurred.

We will need to keep the certificate and database master key that was setup in
the Master database, since there will remain some dependencies upon these
keys that affect the recoverability of the database.

It is recommended to perform either of these removal options while the
database is not in use by other users. In addition, it is always recommended that
a backup be made of the database, the database master key and certificate prior
to reversing TDE.

Summary

Through this demonstration we have successfully implemented TDE for the
HomeLending database and validated that it is enabled. In addition, the steps
to reverse TDE have been provided in the event that it is requested.

While TDE does not offer the granularity of protection that cell-level
encryption offers, it does provide a level of protection that cannot be achieved
through cell-level encryption. This feature provides a means to render
unreadable the plain text that would otherwise be disclosed in the database
backup files.

www.manaraa.com

156

Chapter 6: Transparent Data Encryption

Thanks to the encryption key hierarchy that is external to the database,
additional protection is offered by restricting restoration of the encrypted
database to the instance from which the backup files were created.

Implementing TDE in conjunction with cell-level encryption provides a layered
approach to data security, which enhances its effectiveness. Another option for
protecting sensitive data that is available is one-way encryption, also referred
to as hashing. One-way encryption can be applied alongside TDE, cell-level
encryption and other obfuscation methods. One-way encryption is the topic of
the next chapter.

www.manaraa.com

157

Chapter 7: One-Way Encryption

As a child, I often played the game of "guess what number I am thinking" with
my friends. In this game, I would think of a number and only disclose the range
of numbers in which the number resides. My friends would fire off a series of
guesses until the secret number was guessed.

At a basic level one-way encryption is very similar. A secret value is encrypted
and stored in a data table. However, unlike cell-level encryption, a key is
not generated and so the cipher text that is created and stored remains in that
protected state. Decryption does not occur with one-way encryption; thus the
name of this method. Instead, you must hash the unencrypted value for which
you are seeking and then compare it to the cipher text that is stored in the table.

A common use of one-way encryption is to protect passwords, messages,
and it is sometimes used in digital signatures. However, it also can be used to
protect sensitive data, such as credit card numbers, within the database. Some
might argue that the suggestion to use one-way encryption to protect credit
card details is near heresy, due to the vulnerabilities of one-way encryption to
various forms of attack, such as dictionary or rainbow table attacks, and the
potential for hash collisions.

In this chapter, we will explore these vulnerabilities in more detail and discuss
how "salting" plain text will increase the complexity of the rendered hash
value, and reduce the vulnerability to such attacks, along with the likelihood of
hash collisions. We'll also investigate how use of other obfuscation methods,
specifically truncation, can provide a solution to a real-world challenge that all
encryption methods face.

In my opinion, one-way encryption is not the paper tiger that some make it
out to be. Where there are weaknesses there are also ways to mitigate and
strengthen, and one-way encryption should not be overlooked as a very
valuable weapon in the battle to protect sensitive data.

www.manaraa.com

158

Chapter 7: One-Way Encryption

How One-Way Encryption Works

As noted in the introduction, disclosure of the secret value, encrypted using
one-way encryption, is achieved through comparing the stored hash value with
a second hash value, or search value. This search value is generated using the
same algorithm that created the stored hash value. When a positive match is
verified between the stored hash value and the search value, the stored hash
value's original plain text value is indirectly revealed, as illustrated in Figure
7-1.

Figure 7-1: Searching for a plain text value among protected data.

In SQL Server, one-way encryption is accomplished through use of the
Hashbytes method. This method uses a selected algorithm to generate a
hash. Unlike the cell-level encryption methods, which produce a unique hash
each time a plain text value is encrypted, the Hashbytes method will return
the identical hash for a given text regardless to how many times the method is
executed.

For example, when the plain text value of "1234567890" is hashed
with the SHA1 algorithm, it will reliably return a hash value of
0x01B307ACBA4F54F55AAFC33BB06BBBF6CA803E9A each time
Hashbytes is executed for that plain text value. Below is the syntax for
this method:

HashBytes([Algorithm], [Plain Text])

This method's arguments are:

•	 Algorithm: The algorithm used to create the cipher text. The options for
this argument are: MD2, MD4, MD5, SHA and SHA1. For specific details
regarding these options see Chapter 4.

www.manaraa.com

159

Chapter 7: One-Way Encryption

•	 Plain Text: The plain text that is being converted into cipher text.

The Hashbytes method will be used extensively in our implementation
example of one-way encryption for our HomeLending database.

Benefits and Disadvantages of One-Way
Encryption

In Chapter 5, we discussed the severe performance impact of searching on
data that has been encrypted with cell-level encryption. While the strength of
cell-level encryption and the granular level of control it provides to the security
administrator are definite advantages, it limits the usability of some of the basic
functionality of the database. One-way encryption is not as strong as cell-level
encryption, but it does offer a layer of protection, while maintaining database
and query performance.

As noted previously, there are many who will argue that one-way encryption
should not be considered as an option to protect sensitive data due to its
vulnerabilities and weaknesses. However, with a clear understanding of
the benefits of the technique, its disadvantages, and the methods available
to mitigate these disadvantages, some of the myths and warnings that exist
regarding one-way encryption can be overcome.

This is not to say that one-way encryption is the answer for all of your sensitive
data, or that it is so fool-proof. To determine if one-way encryption should be
part of your protection efforts for sensitive data, consider the following benefits
and disadvantages.

Benefits:

•	 No key maintenance – data that has been encrypted through one-way
encryption is not decrypted; therefore there are no keys generated that
require maintenance.

•	 Negligible impact on database and query performance – one-way
encryption avoids the need to decrypt data, and uses a lightweight
encryption algorithm, based on hash values. Please note that, optimally,
any one-way encrypted field in a query should reside in the WHERE
clause. If the plain text equivalent is presented in the SELECT clause,
performance will be negatively affected.

www.manaraa.com

160

Chapter 7: One-Way Encryption

Disadvantages:

•	 Weaker algorithms – the algorithms available for one-way encryption
in SQL Server are considered weaker than the algorithms used in cell-
level encryption or transparent data encryption.

•	 May require schema modification – the Hashbytes method returns
a varbinary data type. Storage of this value, without conversion, will
require a column of the same data type.

•	 Security vulnerabilities of data in transit – the Hashbytes method
requires the passing of plain text into its arguments. This plain text
value can be disclosed through using SQL Server Profiler, or any other
database transaction monitoring tool.

Known Vulnerabilities

The Payment Card Industry Data Security Standard (PCI DSS), through
requirement 3.4, does offer one-way encryption as a valid option in storing
the primary account number, which is considered sensitive, in a database.
The caveat is that the one-way encryption must use a strong algorithm.
Among the algorithm options that are available to one-way encryption in
SQL Server, PCI DSS defines the SHA1 algorithm as being considered "… an
example of an industry-tested and accepted hashing algorithm.", which is an
acknowledgement that SHA1 meets this criteria. For details regarding all of the
algorithm options available with the Hashbytes method, see Chapter 4.

The following sections review a few of the most common known
vulnerabilities, when using one-way encryption:

Dictionary Attack Vulnerability

A dictionary attack is one in which a list of values are hashed and then
compared to the hash values stored in the target data table. This method
is often used in an attempt to reveal passwords that are protected using
one-way encryption.

By way of an example, consider an attempted dictionary attack is on the
Borrower_Identification table of our HomeLending database, which

www.manaraa.com

161

Chapter 7: One-Way Encryption

we've protected using one-way encryption. Within the Identification_
Value column are the hash values of Social Security Numbers that are
generated through one-way encryption.

The attack, depicted in Figure 7-2, is executed as follows:

•	 The attacker has created an "Attack Dictionary" of hash values that are
based upon a sequence of plain text Social Security Numbers, ranging
from "555-86-0622" through "555-86-0626".

•	 Each of the hash values in the attack dictionary is compared to the hash
values stored in the Borrower_Identification table.

•	 A match is identified in the Borrower_Identification table with
the attack hash value of 0xC36F02D9AC32B2E3813EFF9B
6C23D99D6038FD9A revealing that the plain text value of "555-86-
0625" is a valid Social Security Number within the database.

•	 With this knowledge, the attacker gains access to associated
information such as the borrower's name, address and birth date.

Figure 7-2: Dictionary Attack.

A dictionary attack takes advantage of the inherent nature of one-way
encryption by performing the same action that is used when a user searches
one-way encrypted data, but on a larger scale.

In our example, the attacker knows he is looking for Social Security Numbers
which, in their plain text form, have a standard pattern. It is also known to the
attacker that Social Security Numbers are commonly stored without the dash
("-") character. Therefore, the attacker has a finite set of base values that will
likely return some matches.

If the DBA added a series of characters to the value of the Social Security
Number, before it was encrypted, the resulting hash value would be different
than the hash value resulting from encrypting the real Social Security Number,

www.manaraa.com

162

Chapter 7: One-Way Encryption

and would increase the number of possible character combinations required to
return a positive match.

This process, called salting reduces the risk of a successful dictionary attack
on the one-way encrypted values. Additional details regarding salting, as well
as a specific example of using a salt with the HomeLending database, will be
provided later in this chapter.

Rainbow Table Attack Vulnerability

Database Administrators are not the only people interested in efficiency.
Those who are interested in attacking a database to reveal sensitive data that
is protected through one-way encryption are also interested in the efficiency
of their efforts. In order to initiate a dictionary attack on a database containing
millions of records, the attacker would require a large attack dictionary to cover
the possible combinations of plain text and hash values. This would result in
a long running attack that requires a lot of resources from the database server,
therefore increasing the risk of the attack being detected.

Therefore, the rainbow table attack was developed. The key player in this game
is the rainbow table. The rainbow table consists of a series of rows holding
two columns of data. The first column contains the plain text values that are
being sought, for example a Social Security Number. The second column
contains a value that is the ending hash of a reduction chain. A reduction chain
is the result of taking the plain text value in the first column of our rainbow
table and creating an initial hash; then, a portion of the initial hash, such as its
first six digits, is obtained and another hash value is generated. This process
continues for a number of iterations until an ending hash is derived.

The ending hash that is stored in the rainbow table represents an array of hash
values that can be programmatically derived and iterated in an attack, through
the reversal of the reduction chain building process. This approach provides a
very efficient means of storing the seed values that are used to mount an attack
on one-way encrypted data.

www.manaraa.com

163

Chapter 7: One-Way Encryption

Figure 7-3: The creation of a rainbow table.

Let's consider an example of how this type of an attack can affect the sensitive
data that is protected with one-way encryption. As before, we'll assume that
a rainbow table attack is in progress on the Borrower_Identification
table of our HomeLending database.

The attacker has created a rainbow table, with a reduction chain represented
by each record's last link, based upon a sequence of plain text Social Security
Numbers ranging from "555-86-0622" through "555-86-0626", as shown in
Table 7-1.

Plain Text Ending Hash in the Reduction Chain
555-86-0622 0x9AEE648230046F795612E1B04171F65CA164E4E1
555-86-0623 0x6CCCDD87AC087D7BDD92641EEF44635B6F4B7943
555-86-0624 0x8432814F76099E8EEE0BAA67F39CC44D5F254405
555-86-0625 0x277847607C4D9984C636628418FDFAEBA26B8B34
555-86-0626 0xE86571ACB27E193820DCEA9556F7556771F50D26

Table 7-1: The rainbow table.

Each of the final reduction chain link hash values in the rainbow table is
compared to the hash values stored in the Borrower_Identification
table. This step is basically identical to a dictionary attack. In our specific
example, the result of this stage does not indicate a successful match for any of
our ending hashes.

In the next stage of the attack, we revisit the process that created our ending
hash: the chain reduction process. In our example, the reduction chain was
generated based on the first six digits of each hash. In the execution of this
attack we reverse the reduction chain by taking the first six digits of the hashed

www.manaraa.com

164

Chapter 7: One-Way Encryption

value that is the subject of our attack. Each subsequent link in the reversed
reduction chain is compared to the ending hash that is stored in the rainbow
table. In our case, a successful match occurs for the plain text value of
"555-86-0625".

Much like a dictionary attack, a rainbow table attack can be reasonably
mitigated through the use of a salt on your plain text, prior to applying the
one-way encryption. These attacks rely on the perpetrator having anticipated
a series of plain text values, hashing these values and then comparing the
resulting hashes to the values stored within the database. The use of a salt
increases the complexity of the plain text and reduces the likelihood that the
anticipated value is among the plain text values sought by the attacker.

Additional details regarding salting, as well as a specific example of using a salt
with the HomeLending database, will be provided later in this chapter.

Hash Collision Vulnerability

A hash collision occurs when two unique plain text values produce an identical
hash value. An example would be both"555-86-1234" and "555-86-5298"
returning the identical hash value. Since a value secured using one-way
encryption is not decrypted, and its underlying plain text is revealed through
the comparison of hash values, a hash collision presents a situation in which the
actual plain text value cannot be determined.

The algorithm selected for the encryption process is critical in reducing the
likelihood of hash collisions. Algorithms that produce lengthy hashes increase
the array of possible values, and so reduce the probability of a hash collision.

Of course, the larger the volume of records to which these algorithms are
applied, the higher is the risk of a hash collision. A mathematic problem called
"The Birthday Paradox" is commonly referenced as a formula that can be
used to determine the probability of hash collisions. While not specific to
determining the probability of hash collisions, the Birthday Paradox formula
can be modified to provide this information.

For those who are not mathematics or statistics majors, let's boil this issue
down to its basics.

The possible unique combination of values for a single bit is 2 since a bit is

www.manaraa.com

165

Chapter 7: One-Way Encryption

either a 1 or a 0. The possible unique combination of values for a single byte,
which is eight bits, would be 256, represented as 28. The algorithm options that
are provided with one-way encryption return either a 128 bit or a 160 bit hash
value. The possible unique combination of a 128 bit hash would be 340,282,36
6,920,938,460,000,000,000,000,000,000,000, represented as 2128. The possible
unique combination of a 160 bit hash would be 1,461,501,637,330,902,900,000
,000,000,000,000,000,000,000,000,000, represented as 2160.

In order for the possibilities of a hash collision to occur in the
Identification_Value column of the Borrower_Identification
table, using a 128 bit algorithm, to reach a meager 0.1% it would require a
volume of 830,000,000,000,000,000 records; each containing a unique plain
text value.

There are other factors that come into play that have influence on the actual
possibilities of a hash collision, such as the internal processing that takes place
within the algorithm. Regardless, the vulnerability for the occurrence of a hash
collision is real and should be carefully considered.

With the selection of the hashing algorithm, inclusion of a salt prior to
encryption, and by avoiding use of one-way encryption in tables that have an
extremely high volume of rows, the potential vulnerabilities of the technique
can be mitigated, and it becomes a worthy option to consider when protecting
sensitive data.

Reducing Vulnerability: Salting a Hash

In culinary circles, salt is used as a preservative and a flavor enhancer. In the
days before refrigeration meat was heavily salted for extended storage. The
salt slowed the deterioration of the meat and prevented mold and bacteria from
contaminating it. This protected the integrity of the meat so that its quality
could be assured for a reasonable length of time.

Salt in cryptography has a similar effect. A one-way encrypted hash value is
vulnerable to dictionary and rainbow table attacks; but adding a salt to the plain
text, before it is encrypted, results in a hash value that is very resilient to these
attacks. Salting renders the underlying plain text more complex, and breaks
expected patterns that can be anticipated by the attacker.

www.manaraa.com

166

Chapter 7: One-Way Encryption

For example, an attacker who is executing a dictionary attack against a
table that contains unsalted hash values of Social Security Numbers
will anticipate that the patterns of the plain text will be "000-00-0000"
or "000000000". This known pattern provides the attacker with a finite
combination of approximately one billion (109) possible values. However,
if the Social Security Number is salted with a seven character alphanumeric
value, for example, then the possible combinations for the plain text values
skyrockets to over seventy eight quintillion (78 x 1018). Therefore, salting is a
highly effective way of strengthening one-way encryption.

In the HomeLending database we will create a scalar-valued user defined
function, called GetHashSalt, which is designed to return a seven character
value, which will be used as the salt portion of a one-way encryption process.

Scalar-valued user defined function:

… is a function in which the value that is returned from its execution is a
single value.

Listing 7-1 shows the script to create our GetHashSalt function. We will
offer six variations of salt values designated with the values "L01" through
"L06". These variations will provide a deeper level of protection to items that
are salted throughout our database. These are the values that will be passed
through the @Type argument of this user defined function.
Use HomeLending;
GO

CREATE FUNCTION GetHashSalt
(
 @Type varchar(3)
)
RETURNS varchar(7)
WITH ENCRYPTION
AS
BEGIN

DECLARE @Rtn varchar(7)

IF @Type = 'L01' SET @Rtn = 'HYz5#45';
IF @Type = 'L02' SET @Rtn = 'Ku&7723';
IF @Type = 'L03' SET @Rtn = 'PW2%230';
IF @Type = 'L04' SET @Rtn = 'T^542Xc';

www.manaraa.com

167

Chapter 7: One-Way Encryption

IF @Type = 'L05' SET @Rtn = '89*we@4';
IF @Type = 'L06' SET @Rtn = '098&tsS';

RETURN @Rtn;

END
GO

Listing 7-1: The GetHashSalt UDF.

Inclusion of the WITH ENCRYPTION option prevents the revelation of these
salt values by viewing the definition of the user defined function, as well as
preventing its modification. This renders the code of the user defined function
invisible through catalog views, unencrypted backup files and through SSMS.

With this user defined function, we can salt our plain text values before they are
encrypted. The process of doing this involves the following steps:

•	 Call the GetHashSalt user defined function and assign it to
a variable.

•	 Concatenate the variable to the plain text of the data that is to
be encrypted.

•	 Place the resulting concatenated value in the plain text argument of
the Hashbytes function.

For example, an original plain text of "555-37-0143" and a salt value being
"HYz5#4555", the resulting concatenated value will be "HYz5#45555-37-
0143". Using the "SHA1" algorithm, the resulting salted hash value will be
0xD544F25AC44F6CBC108DA211D2A48990A343359C.

Listing 7-2 will grant EXECUTE permissions on the GetHashSalt UDF to the
Sensitive_high and Sensitive_meduim database roles.
Use HomeLending;
GO

GRANT EXECUTE ON dbo.GetHashSalt
 TO Sensitive_high, Sensitive_medium;
GO

Listing 7-2: Granting permissions to the GetHashSalt UDF.

Specific examples of the application of a salt, with the HomeLending
database, will be illustrated in the following one-way encryption demonstration.

www.manaraa.com

168

Chapter 7: One-Way Encryption

Implementing One-Way Encryption

Using the HomeLending database, we will implement one-way
encryption. For simplicity and clarity, we will focus on the Borrower_
Identification table and we will assume that the modifications to the
Borrower_Identification table and Identification_Value
column, which were outlined in Chapter 5, either have been reversed through a
backup file restore, or not implemented.

The steps we will follow are as follows:

1.	 Always backup your database prior to implementing any method of
protection. Details regarding this process are covered in Chapter 6.

2.	 Create the primary varbinary hash column to store the hashed
values of the Identification_Value column. This hashed column
must only be accessible to members of the Sensitive_high
database role.

3.	 Create a secondary version of the hash column that stores truncated
hash values of the underlying plain text, in order that lower-privilege
roles can still perform searches based on the values contained in the
primary hash column.

4.	 Salt the values stored in the Identification_value column, us-
ing the GetSaltHash UDF created in Listing 7.1, and then hash the
values, using the HashBytes method, and populate the hash columns.

5.	 Test and verify our new one-way encryption architecture.

6.	 Drop the original plain-text Identification_Value column.

These steps would be repeated, as needed, for each column in the database
tables that are subject to the implementation of one-way encryption.

Please note that the process of implementing one-way encryption involves
modification of existing database objects. Please perform a full database backup
prior to proceeding in the event that recovery is required.

www.manaraa.com

169

Chapter 7: One-Way Encryption

Create the Primary Hash Column

As noted in the review of the Borrower_Identification table in
Chapter 5, the Identification_Value column contains the plain text
representation of the actual identification value for a given borrower. For
example, if the identification value was a Social Security Number, the value
contained in this column would appear in the format of "555-55-5555".

The Hashbytes method that we'll use to one-way-encrypt our
Identification_Value column returns a varbinary data type, which
stores a variable-length numeric representation of a value. For example, the
value of "A" is stored with the value of "0x41" while "ABC" is stored as
"0x414243". The varbinary (and Binary) data type has a maximum length
of 8,000 characters.

However, in the original schema design, the Identification_Value
column is of data type varchar. Therefore, we will need to create a new
column in the HomeLending database to store the encrypted varbinary
values. Listing 7.3 shows the script to create a new Identification_
Value_H column (where the "H" stands for hash) with the varbinary data
type, using the ALTER TABLE method.
USE HomeLending;
GO

ALTER TABLE dbo.Borrower_Identification
 ADD Identification_Value_H varbinary(MAX) NULL;
GO

Listing 7-3: Creating the hash column.

In Listing 7-4, we execute the sp_addextendedproperty system stored
procedure in order to document the fact that the new Identification_
Value_H column is classified as "High" sensitivity.
USE HomeLending;
GO

EXEC sp_addextendedproperty
 @name='Sensitivity_Class',
 @value='High',
 @level0type='SCHEMA',
 @level0name='dbo',
 @level1type='TABLE',
 @level1name='Borrower_Identification',

www.manaraa.com

170

Chapter 7: One-Way Encryption

 @level2type='COLUMN',
 @level2name='Identification_Value_H';
GO

Listing 7-4: Documenting the encrypted column as "high" sensitivity.

Create a Secondary Hash Column for Searching

With our HomeLending database, there is an expectation by the users
that the members of the Sensitive_medium database role should
be able to search for borrowers based upon the values contained in the
Identification_Value column. However, our security policy dictates
that the Identification_Value_H column has a Sensitivity_Class
of "High", and so only members of the Sensitive_high database role are
granted permissions to access it. This presents an interesting challenge.

A solution to this challenge is to offer an additional column that will contain
the hash values of truncated versions of the original plain text. For example,
this column would contain a hash of the last four digits of the Social Security
Number. This new column will be offered to users who are not members of the
Sensitive_high database role, as a way to search this data.

Listing 7-5 creates this new column, called Identification_Value_HT,
on the Borrower_Identification table. The "T" represents the fact
that it is a truncated version of the plain text value. In addition, we define its
Sensitivity_Class designation as "Medium."
USE HomeLending;
GO

ALTER TABLE dbo.Borrower_Identification
 ADD Identification_Value_HT varbinary(MAX) NULL;
GO

EXEC sp_addextendedproperty
 @name='Sensitivity_Class',
 @value='Medium',
 @level0type='SCHEMA',
 @level0name='dbo',
 @level1type='TABLE',
 @level1name='Borrower_Identification',
 @level2type='COLUMN',
 @level2name='Identification_Value_HT';
GO

Listing 7-5: Creating and documenting the secondary hash column.

www.manaraa.com

171

Chapter 7: One-Way Encryption

When we populate these new columns, the Identification_Value_H
column will be populated with a hash value that is based on the full plain text
value of the Identification_Value column, and the Identification_
Value_HT column will be populated with a hash value that is based on the
last four digits of the plain text. A salt will be applied to both, based upon our
previously created GetHashSalt user defined function.

Populate the Hash Columns

The next step will be to populate our new Identification_Value_H
and Identification_Value_HT columns with the hash values of the
Identification_Value column.

Listing 7-6 shows the script to do this. It uses the GetHashSalt user defined
function to salt the values in the Identification_Value column and then
updates the data in our the newly-created hash columns in our Borrower_
Identification table so that they are salted and hashed, in the case of the
Identification_Value_H column, and salted, truncated and hashed, in
the case of the Identification_Value_HT column.
USE HomeLending;
GO

DECLARE @Salt varchar(7)
SET @Salt = dbo.GetHashSalt('L01');

UPDATE dbo.Borrower_Identification
 SET Identification_Value_H =
 HASHBYTES('SHA1', @Salt +
 Identification_Value),
 Identification_Value_HT =
 HASHBYTES('SHA1', @Salt +
 RIGHT(Identification_Value,4));
GO

Listing 7-6: Salting and hashing the Identification_Value column.

Later in this chapter we will take the code provided in Listing 7-6 and place it
in a stored procedure, which will be used when the records are inserted
and updated.

www.manaraa.com

172

Chapter 7: One-Way Encryption

Verify the Implementation

To verify that our hash values were successfully generated, we can execute
SELECT statements that filter, based upon our newly generated columns, as
shown in Listing 7-7.
USE HomeLending;
GO

DECLARE @Salt varchar(7)
SET @Salt = dbo.GetHashSalt('L01');

-- Returns search by full SSN
SELECT
 Identification_Value
FROM
 dbo.Borrower_Identification
WHERE
 Identification_Value_H =
 HASHBYTES('SHA1', @Salt + '555-20-7151');

-- Returns search by last four digits of SSN
SELECT
 Identification_Value
FROM
 dbo.Borrower_Identification
WHERE
 Identification_Value_HT =
 HASHBYTES('SHA1', @Salt + '7151');
GO

Listing 7-7: Testing the one-way encryption.

The results of these queries, indicating successful implementation of one-way
encryption, would appear as follows:

Identification_Value

555-20-7151
(1 row(s) affected)
Identification_Value

555-20-7151
(1 row(s) affected)

www.manaraa.com

173

Chapter 7: One-Way Encryption

Drop the Unencrypted Column

Having successfully encrypted the contents of our Identification_
Value column, captured it into the Identification_Value_H and
Identification_Value_HT columns, and verified that they are working
correctly; we can remove the Identification_Value column that
contains the plain text values of our sensitive data.

This is accomplished through the use of the ALTER TABLE method and the
DROP COLUMN argument, as shown in Listing 7-8.
USE HomeLending;
GO

ALTER TABLE dbo.Borrower_Identification
 DROP COLUMN Identification_Value;
GO

Listing 7-8: Dropping the plain-text column.

Please note that the plain text values contained in this column will be
permanently lost with its removal. This is definitely an action in which we
will want to take pause. Perform the DROP COLUMN command only if you are
certain that you will no longer need to reference its contents. At the beginning
of this process we performed a database backup which will provide us a means
of recovery if needed. If the plain text values are archived to another location it
too will need to be protected.

Creating the Interface

The sensitive data that is contained within the Borrower_Identification
table is now protected with one-way encryption. Our next steps are to create the
interface through which our users can access this table.

In Chapter 5, as a general policy, we denied direct access to all base tables
within the HomeLending database using the script shown in Listing 7-9.
USE HomeLending;
GO

DENY ALTER,CONTROL,REFERENCES,DELETE,INSERT,UPDATE,SELECT
 ON dbo.Borrower_Identification

www.manaraa.com

174

Chapter 7: One-Way Encryption

 TO Sensitive_high, Sensitive_medium, Sensitive_low
GO

Listing 7-9: Denying access to the base tables.

We adopt the same strategy here, using an interface consisting of a view and
three stored procedures to mediate our users' interaction with this table. By
implementing this structure we can control the access to our data at a more
granular level than simply granting access to entire tables. In addition, this
structure allows us the opportunity to embed cryptographic functionality and
other logical methods into our views and stored procedures.

Creating the View

In Chapter 5, we created a view called vwBorrower_Identification, by
which authorized users in the Sensitive_high and Sensitive_medium
roles could access the values in the Borrower_Identification table (see
Listing 5-13). However, only members of the Sensitive_high role were
able to use this view to view in decrypted form the cell-level-encrypted values.

Here, we will recreate this view in light of our new one-way encryption
architecture, as shown in Listing 7-10. Users of the view will not gain access
to the Identification_Value_H column, so that the ability to reveal the
plain text through comparison of hash values is limited to the database roles
that are in the Sensitive_high database role. Instead, we include our
alternative Identification_Value_HT column, which contains a hash
value of the original plain text truncated to its last four digits.
USE HomeLending;
GO

-- Create the view
CREATE VIEW dbo.vwBorrower_Identification
AS

SELECT
 Borrower_Identification_ID,
 Borrower_ID,
 Identification_Type_ID,
 Identification_Value_HT
FROM
 dbo.Borrower_Identification;
GO

www.manaraa.com

175

Chapter 7: One-Way Encryption

-- Grant Select Permissions
GRANT SELECT ON dbo.vwBorrower_Identification
 TO Sensitive_high, Sensitive_medium;
GO

Listing 7-10: Recreating the vwBorrower_Identification view.

Creating the Stored Procedures

Having earlier restricted direct access to the Borrower_Identification
table, the ability to insert, update and search records that are contained
within the Borrower_Identification table will be achieved through
stored procedures.

The stored procedure that will be used to perform the UPDATE methods will
be called Update_Borrower_Identification and the script to create it
is shown in Listing 7-11. The plain text value of the borrower's identification
value as well as the unique identifying value for the record that is being
updated in the Borrower_Identification table is passed into this stored
procedure as parameters. This stored procedure then performs the necessary
salting and hashing, using the GetHashSalt function and the Hashbytes
method, as described earlier.
USE HomeLending;
GO

CREATE PROCEDURE dbo.Update_Borrower_Identification
 @Borrower_Identification_ID bigint,
 @Identification_Value varchar(250)
AS
BEGIN TRY

 -- Get Salt
 DECLARE @Salt varchar(7)
 SET @Salt = dbo.GetHashSalt('L01');

 -- Performs the update of the record
 UPDATE dbo.Borrower_Identification
 SET Identification_Value_H =
 HashBytes('SHA1',@Salt +
 @Identification_Value),
 Identification_Value_HT =
 HashBytes('SHA1',@Salt +

www.manaraa.com

176

Chapter 7: One-Way Encryption

 Right(@Identification_Value,4))
 WHERE
 Borrower_Identification_ID =
 @Borrower_Identification_ID;

END TRY
BEGIN CATCH
 -- Returns the error information
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH
GO

Listing 7-11: Creating the Update_Borrower_Identification
stored procedure.

The stored procedure that will be used to perform the INSERT methods will
be called Insert_Borrower_Identification. Passed into this stored
procedure as parameters are:

•	 The plain text value of the borrower's identification value.

•	 The foreign key value that defines the identification type.

•	 The foreign key value for the borrower to which the identification
record is associated.

The script to create this stored procedure is shown in Listing 7-12.
USE HomeLending;
GO

CREATE PROCEDURE dbo.Insert_Borrower_Identification
 @Borrower_ID bigint,
 @Identification_Type_ID int,
 @Identification_Value varchar(250)
AS
BEGIN TRY

 -- Get Salt
 DECLARE @Salt varchar(7)
 SET @Salt = dbo.GetHashSalt('L01');

 -- Performs the update of the record
 INSERT INTO dbo.Borrower_Identification

www.manaraa.com

177

Chapter 7: One-Way Encryption

 (
 Borrower_ID,
 Identification_Type_ID,
 Identification_Value_H,
 Identification_Value_HT
)
 VALUES
 (
 @Borrower_ID,
 @Identification_Type_ID,
 HashBytes('SHA1',@Salt +
 @Identification_Value),
 HashBytes('SHA1',@Salt +
 Right(@Identification_Value,4))
);

 -- Captures the new Borrower_Identifcation_ID value
 SELECT @@IDENTITY;

END TRY
BEGIN CATCH
 -- Returns the error information
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH
GO

Listing 7-12: Creating the Insert_Borrower_Identification
stored procedure.

Again, the Hashbytes method is used to create the hash value for the plain
text identification value and the salt is derived from the GetHashSalt user
defined function. The SHA1 algorithm is used to create the hash value.

The final stored procedure, Select_Borrower_Identification, will be
used to return filtered sets of data based upon the truncated plain text, in this
case the last four digits, sent into its Identification_Value argument, as
shown in Listing 7-13.
USE HomeLending;
GO

CREATE PROCEDURE dbo.Search_Borrower_Identification
 @Identification_Value varchar(4)

www.manaraa.com

178

Chapter 7: One-Way Encryption

AS
BEGIN TRY

 -- Get Salt
 DECLARE @Salt varchar(7)
 SET @Salt = dbo.GetHashSalt('L01');

 -- Return Search Results
 SELECT
 bn.Borrower_LName,
 bn.Borrower_FName,
 bn.Borrower_MName,
 bn.Borrower_Suffix
 FROM
 dbo.Borrower_Identification bi
 INNER JOIN dbo.Borrower_Name bn
 ON bi.Borrower_ID = bn.Borrower_ID
 WHERE
 bi.Identification_Value_HT =
 HashBytes('SHA1',@Salt +
 @Identification_Value);

END TRY
BEGIN CATCH
 -- Returns the error information
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH
GO

Listing 7-13: Creating the Search_Borrower_Identification
stored procedure.

The plain text identification value that is passed in is salted and hashed, using
the "SHA1" algorithm, and then placed in the WHERE clause of the statement to
be compared with the hash value that is stored in the table.

www.manaraa.com

179

Chapter 7: One-Way Encryption

Setting and Verifying Permissions to the Stored
Procedures

Once the stored procedures have been created, we need to grant the appropriate
permissions to them (see Listing 7-14). With the HomeLending database we
will be operating on the assumption that the Sensitive_high database role
will have access to the information that will be inserted and updated to the
Borrower_Identification table.

The ability to search the data that is in the Borrower_Identification
table will be granted to the Sensitive_high and Sensitive_medium
database roles, due to our use of the Identification_Value_HT column
that contains a hash value of the last four digits of our original plain text.
USE HomeLending;
GO

-- Grant Execute Permissions to Sensitive_high database
role
GRANT EXECUTE ON dbo.Update_Borrower_Identification
 TO Sensitive_high;
GO

-- Grant Execute Permissions to Sensitive_high database
role
GRANT EXECUTE ON dbo.Insert_Borrower_Identification
 TO Sensitive_high;
GO

-- Grant Execute Permissions to Sensitive_high
-- and Sensitive_medium database roles
GRANT EXECUTE ON dbo.Search_Borrower_Identification
 TO Sensitive_high, Sensitive_medium;
GO

Listing 7-14: Setting permissions to the stored procedures.

Now that our stored procedures have been created we will want to verify that
the permissions are effective, using of EXECUTE AS USER to impersonate
a member of the various database roles. The use of REVERT terminates the
impersonation and returns us to our original user account.

Listing 7-15 executes the Search_Borrower_Identification stored
procedure with the plain text value of "0143", which is the last four digits of a
known Social Security Number, being passed as its argument.

www.manaraa.com

180

Chapter 7: One-Way Encryption

USE HomeLending;
GO

-- execute as a user who is a member of Sensitive_high role
EXECUTE AS USER = 'WOLFBA';
GO
Exec dbo.Search_Borrower_Identification '0143';
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_medium
role

EXECUTE AS USER = 'KELLEYWB';
GO
Exec dbo.Search_Borrower_Identification '0143';
GO
REVERT;
GO

-- execute as a user who is a member of Sensitive_low role
EXECUTE AS USER = 'JONESBF';
GO
Exec dbo.Search_Borrower_Identification '0143';
GO
REVERT;
GO

Listing 7-15: Verifying permissions.

The result of this verification will reflect that rows were returned for the queries
for the Sensitive_high and Sensitive_medium members; but since
permissions did not exist for the Sensitive_low members the actual rows
will not be returned. Instead the following will appear:

 (1 row(s) affected)
 (1 row(s) affected)
Msg 229, Level 14, State 5, Line 1
The EXECUTE permission was denied on the object 'Search_
Borrower_Identification', database 'HomeLending', schema
'dbo'.

To view the actual rows returned, execute each batch in this script individually.

www.manaraa.com

181

Chapter 7: One-Way Encryption

Summary

Through this demonstration we have successfully implemented one-way
encryption for the Borrower_Identification table of our HomeLending
database. This addresses only the plain text in a single column of a single table.
Within the database there are many more columns that may be good candidates
for one-way encryption.

Through our exploration of the various attacks that can be waged against data
that is protected with one-way encryption, and our better understanding of the
potential for hash collisions, we have a better understanding of when the option
to apply one-way encryption is valid and when it is not.

The addition of a salt through the use of the GetHashSalt user defined
function provided additional strength to our hash values and mitigated its
vulnerabilities to attack; widening the opportunity to use this valuable feature to
protect our sensitive data while maintaining functionality that is lost with other
encryption methods.

Now that we have a cell-level encryption, transparent data encryption and
one-way encryption available to us in our sensitive data protection efforts,
let's proceed in considering other obfuscation methods that do not require
encryption.

www.manaraa.com

182

Chapter 8: Obfuscation

Halloween is one of my favorite times of the year. On this holiday, the
young and young at heart apply make-up, masks, costumes and outfits and
wander the streets in search of sweet treats from their neighbors. These
costumes are designed to hide the identity of their wearer and grant that person
the freedom to shed their everyday demeanor and temporarily adopt the persona
of their disguise.

Applying the technique of obfuscation to our sensitive data is somewhat akin
to donning a Halloween disguise. By doing so, we mask the underlying data
values, hiding their true nature, until the appropriate time to disclose it.

The previous chapters have explored in detail various encryption techniques,
all of which are considered forms of obfuscation. In this chapter, we will
explore a handful of additional obfuscation techniques, which do not require an
algorithm, encryption key, decryption key or transformation of data types.

Each of these methods, including character scrambling and masking, numeric
variance and nulling, rely on an array of built-in SQL Server system functions
that are used for string manipulation.

While these methods of obfuscation will not be used by any federal
government to protect nuclear missile launch codes, they can be highly
effective when printing documents that contain sensitive data, transferring
production data to test environments or presenting data through reporting and
warehousing mechanisms.

Development Environment Considerations

Before we proceed with an exploration of obfuscation methods, let's spend
a few moments reviewing a strong candidate for the implementation of the
obfuscation methods presented in this chapter: the development environment.

The database that is utilized for daily business transactions is referred to as
the production database. The version of the database that is used to develop
and test new functionality is referred to as the development database. These
environments are separated so that new development and troubleshooting can

www.manaraa.com

183

Chapter 8: Obfuscation

occur without having a negative effect on the performance and integrity of the
production database.

Any proposed modifications to a production database should be first
implemented and tested on a development or test database. In order to ensure
the accuracy of this testing, the development database should mimic the
production database as closely as possible, in terms of the data it contains and
the set of security features it implements.

This means that all of the sensitive data efforts and options noted in this book
apply to both environments and that it may be necessary to store sensitive
data in both the development and production databases. The difficulty with
this is that it is common for developers and testers to be granted elevated
permissions within the development database. If the development database
contains identical data to that stored in the production database, then these
elevated permissions could present a severe and intolerable security risk to the
organization and its customers.

In order to mitigate this risk, the Database Administrator responsible for
refreshing the contents of the development environment should apply
obfuscation methods to hide the actual values that are gleaned from the
production environment.

Obfuscation Methods

The word obfuscation is defined by the American Heritage Dictionary as
follows:

"To make so confused or opaque as to be difficult to perceive or understand
… to render indistinct or dim; darken."

The word obfuscation, at times, can be used interchangeably with the term
obscurity, meaning "the quality or condition of being unknown". However,
there is a subtle difference between the two terms and the former definition
is more appropriate since obscurity implies that the hidden condition can be
achieved without any additional effort.

Many methods of "disguise", or obfuscation, are available to the Database
Administrator that can contribute a level of control to how sensitive data is

www.manaraa.com

184

Chapter 8: Obfuscation

stored and disclosed, in both production and development environments. The
options that will be discussed in this chapter are:

•	 Character Scrambling

•	 Repeating Character Masking

•	 Numeric Variance

•	 Nulling

•	 Artificial Data Generation

•	 Truncating

•	 Encoding

•	 Aggregating.

Many of these methods rely on SQL Server's built-in system functions for
string manipulation, such as SUBSTRING, REPLACE, and REPLICATE.
Appendix A provides a syntax reference for these, and other system functions
that are useful in obfuscating sensitive data.

Prior to diving into the details of these obfuscation methods we need to explore
the unique value of another system function, called RAND.

The Value of RAND

The RAND system function is not one that directly manipulates values for
the benefit of obfuscation, but its ability to produce a reasonably random
value makes it a valuable asset when implementing character scrambling or
producing a numeric variance.

One special consideration of the RAND system function is that when it is
included in a user defined function an error will be returned when the user
defined function is created.

Msg 443, Level 16, State 1, Procedure SampleUDF, Line 12
Invalid use of a side-effecting operator 'rand' within a
function.

This can be overcome by creating a view that contains the RAND system
function and referencing the view in the user defined function. The script in

www.manaraa.com

185

Chapter 8: Obfuscation

Listing 8-1 will create a view in the HomeLending database that returns
a random value, using the RAND system function. Since this view holds
no security threat, we will make this available to the Sensitive_high,
Sensitive_medium and Sensitive_low database roles with SELECT
permissions on this view.

Use HomeLending;
GO

-- Used to reference RAND with in a function
CREATE VIEW dbo.vwRandom
AS
SELECT RAND() as RandomValue;
GO

-- Grant permissions to view
GRANT SELECT ON dbo.vwRandom
 TO Sensitive_high, Sensitive_medium, Sensitive_low;
GO

Listing 8-1: Generating random numbers using RAND.

Now, we can obtain a random number in any user defined function with
a simple call to our new view. In Listing 8-2, an example is provided that
produces a random number between the values of 1 and 100.
DECLARE @Rand float;
DECLARE @MinVal int;
DECLARE @MaxVal int;
SET @MinVal = 1;
SET @MaxVal = 100;

SELECT
 @Rand = ((@MinVal + 1) - @MaxVal) * RandomValue + @
MaxVal
FROM
 dbo.vwRandom;
GO

Listing 8-2: Testing the View.

Appendix A of this book provides a syntax reference for the RAND
system function.

www.manaraa.com

186

Chapter 8: Obfuscation

Character Scrambling

Character scrambling is a process by which the characters contained within
a given statement are re-ordered in such a way that its original value is
obfuscated. For example, the name "Jane Smith" might be scrambled into
"nSem Jatih".

This option does have its vulnerabilities. The process of cracking a scrambled
word is often quite straightforward, and indeed is a source of entertainment
for many, as evidenced by newspapers, puzzle publications and pre-movie
entertainment.

Cracking a scrambled word can be made more challenging by, for example,
eliminating any repeating characters and returning only lower case letters.
However, not all values will contain repeating values, so this technique may not
be sufficient for protecting highly sensitive data.

The Character Scrambling UDF

In the HomeLending database we will create a user defined function called
Character_Scramble that performs character scrambling, which is shown
in Listing 8-3. It will be referenced as needed in views and stored procedures
that are selected to use this method of data obfuscation.

Included in this user defined function is a reference to the vwRandom view
that was created in Listing 8-1. In essence, this user defined function will loop
through all of the characters of the value that is passed through the @OrigVal
argument replacing each character with other randomly selected characters
from the same string. For example, the value of "John" may result as "nJho".

In order for the appropriate users to utilize this user defined function
permissions must be assigned. The GRANT EXECUTE command is included in
the following script.
Use HomeLending;
GO

-- Create user defined function
CREATE FUNCTION Character_Scramble
(
 @OrigVal varchar(max)
)

www.manaraa.com

187

Chapter 8: Obfuscation

RETURNS varchar(max)
WITH ENCRYPTION
AS
BEGIN

-- Variables used
DECLARE @NewVal varchar(max);
DECLARE @OrigLen int;
DECLARE @CurrLen int;
DECLARE @LoopCt int;
DECLARE @Rand int;

-- Set variable default values
SET @NewVal = '';
SET @OrigLen = DATALENGTH(@OrigVal);
SET @CurrLen = @OrigLen;
SET @LoopCt = 1;

-- Loop through the characters passed
WHILE @LoopCt <= @OrigLen
 BEGIN
 -- Current length of possible characters
 SET @CurrLen = DATALENGTH(@OrigVal);

 -- Random position of character to use
 SELECT
 @Rand = Convert(int,(((1) - @CurrLen) *
 RandomValue + @CurrLen))
 FROM
 dbo.vwRandom;

 -- Assembles the value to be returned
 SET @NewVal = @NewVal +
 SUBSTRING(@OrigVal,@Rand,1);

 -- Removes the character from available options
 SET @OrigVal =
 Replace(@OrigVal,SUBSTRING(@OrigVal,@
Rand,1),'');

 -- Advance the loop
 SET @LoopCt = @LoopCt + 1;
 END
 -- Returns new value
 Return LOWER(@NewVal);

www.manaraa.com

188

Chapter 8: Obfuscation

END
GO

-- Grant permissions to user defined function
GRANT EXECUTE ON dbo.Character_Scramble
 TO Sensitive_high, Sensitive_medium, Sensitive_low;
GO

Listing 8-3: The character scrambling UDF.

This user defined function takes advantage of system functions such as
DATALENGTH which provides the length of a value, SUBSTRING which
is used to obtain a portion of a value, REPLACE which replaces a value with
another value and LOWER which returns the value in lowercase characters. All
are valuable to string manipulation. Appendix A of this book provides a syntax
reference regarding these system functions.

This UDF will be referenced in any views and stored procedures that are
selected to use this method of data obfuscation, an example of which we'll see
in the next section.

Repeating Character Masking

Over recent years the information that is presented on a credit card receipt has
changed. In the past, it was not uncommon to find the entire primary account
number printed upon the receipt. Today, this number still appears on credit
card receipts; but only a few of the last numbers appear in plain text with the
remainder of the numbers being replaced with a series of "x" or "*" characters.
This is called a repeating character mask.

This approach provides a level of protection for sensitive data, rendering
it useless for transactional purposes, while providing enough information,
the number's last four digits, to identify the card on which the transaction
was made.

In the HomeLending database, we will create a user defined function called
Character_Mask, as shown in Listing 8-4, which performs repeating
character masking, which again can be referenced as needed in views and
stored procedures that are selected to use this method of data obfuscation.

This user defined function will modify the value that is passed through the @
OrigVal argument and replace all of the characters with the character passed

www.manaraa.com

189

Chapter 8: Obfuscation

through the @MaskChar argument. The @InPlain argument
defines the number of characters that will remain in plain text after this
user defined function is executed. For example, the value of "Samsonite" may
result in "xxxxxxite".

In order for the appropriate users to utilize this user defined function
permissions must be assigned. The GRANT EXECUTE command is included in
the script.

Use HomeLending;
GO

-- Create user defined function
CREATE FUNCTION Character_Mask
(
 @OrigVal varchar(max),
 @InPlain int,
 @MaskChar char(1)
)
RETURNS varchar(max)
WITH ENCRYPTION
AS
BEGIN

 -- Variables used
 DECLARE @PlainVal varchar(max);
 DECLARE @MaskVal varchar(max);
 DECLARE @MaskLen int;

 -- Captures the portion of @OrigVal that remains in
plain text
 SET @PlainVal = RIGHT(@OrigVal,@InPlain);
 -- Defines the length of the repeating value for the
mask
 SET @MaskLen = (DATALENGTH(@OrigVal) - @InPlain);
 -- Captures the mask value
 SET @MaskVal = REPLICATE(@MaskChar, @MaskLen);
 -- Returns the masked value
 Return @MaskVal + @PlainVal;

END
GO

-- Grant permissions to user defined function

www.manaraa.com

190

Chapter 8: Obfuscation

GRANT EXECUTE ON dbo.Character_Mask
 TO Sensitive_high, Sensitive_medium, Sensitive_low;
GO

Listing 8-4: The Character_Mask UDF.

This user defined function takes advantage of system functions such as
DATALENGTH, which provides the length of a value, and REPLICATE which
is used to repeat a given character for a defined number of iterations. Both of
these are valuable to string manipulation.

NOTE:

Appendix A of this book provides a syntax reference regarding these
system functions.

To illustrate the use of this, and our previous Character_Scramble user
defined function, to present data in a masked format to the user, we will create
a view in the HomeLending database, called vwLoanBorrowers, for the
members of the Sensitive_high and Sensitive_medium database roles.

This view, shown in Listing 8-5, will present to the lender case numbers, using
the Character_Mask user defined function, and the borrower names using
the Character_Scramble user defined function.

Use HomeLending;
GO

CREATE VIEW dbo.vwLoanBorrowers
AS
SELECT
 dbo.Character_Mask(ln.Lender_Case_Number,4,'X')
 AS Lender_Case_Number,
 dbo.Character_Scramble(bn.Borrower_FName + ' '
 + bn.Borrower_LName)
 AS Borrower_Name
FROM
 dbo.Loan ln
 INNER JOIN dbo.Loan_Borrowers lb
 ON ln.Loan_ID = lb.Loan_ID
 AND lb.Borrower_Type_ID = 1 -- Primary Borrowers
Only
 INNER JOIN dbo.Borrower_Name bn

www.manaraa.com

191

Chapter 8: Obfuscation

 ON lb.Borrower_ID = bn.Borrower_ID;
GO

-- Grant permissions to view
GRANT SELECT ON dbo.vwLoanBorrowers
 TO Sensitive_high, Sensitive_medium;
GO

Listing 8-5: The vwLoanBorrowers View.

The vwLoanBorrowers view, without the use of the masking user defined
functions, would have returned the data set shown in Table 8-1.

Lender Case Number Borrower Name
9646384387HSW Damion Booker
8054957254EZE Danny White

Table 8-1: The non-obfuscated result set.

However, with the user defined functions in place the masked data set shown in
Table 8-2 is returned:

Lender Case Number Borrower Name
XXXXXXXXX7HSW o akdenbimr
XXXXXXXXX4EZE ni ahtydwe

Table 8-2: The results returned after character masking and scrambling.

Numeric Variance

Numeric variance is a process in which the numeric values that are stored
within a development database can be changed, within a defined range, so as
not to reflect their actual values within the production database. By defining a
percentage of variance, say within 10% of the original value, the values remain
realistic for development and testing purposes. The inclusion of a randomizer
to the percentage that is applied to each row will prevent the disclosure of the
actual value, through identification of its pattern.

In the HomeLending database, we will create a user defined function called
Numeric_Variance that increases or decreases the value of the value passed
to it by some defined percent of variance, also passed as a parameter to the

www.manaraa.com

192

Chapter 8: Obfuscation

function. For example, if we want the value to change within 10% of its current
value we would pass the value of 10 in the @ValPercent argument.

A randomizer is added through the use of the vwRandom view that we created
earlier in this chapter. This will vary the percent variance on a per execution
basis. For example, the first execution may change the original value by 2%,
while the second execution may change it by 6%.

The script to create this Numeric_Variance function, which can be
referenced as needed in other views and stored procedures, is shown
in Listing 8-6.
USE HomeLending;
GO

-- Create user defined function
CREATE FUNCTION Numeric_Variance
(
 @OrigVal float,
 @VarPercent numeric(5,2)
)
RETURNS float
WITH ENCRYPTION
AS
BEGIN
 -- Variable used
 DECLARE @Rand int;

 -- Random position of character to use
 SELECT
 @Rand = Convert(int,((((0-@VarPercent)+1) -
 @VarPercent) * RandomValue + @VarPercent))
 FROM
 dbo.vwRandom;

 RETURN @OrigVal + CONVERT(INT,((@OrigVal*@Rand)/100));
END
GO

-- Grant permissions to user defined function
GRANT EXECUTE ON dbo.Numeric_Variance
 TO Sensitive_high, Sensitive_medium, Sensitive_low;
GO

Listing 8-6: The Numeric_Variance UDF.

www.manaraa.com

193

Chapter 8: Obfuscation

To employ this method of masking in a development database, simply use an
UPDATE statement to change the column's value to a new value, using our
Numeric_Variance function, as shown in Listing 8-7.
USE HomeLending;
GO

-- Variables used
DECLARE @Variance numeric(5,2)
-- Set variance to 10%
SET @Variance = 10

UPDATE dbo.Loan_Term
 SET Loan_Amount =
 dbo.Numeric_Variance(Loan_Amount,@Variance)
FROM
 dbo.Loan_Term;
GO

Listing 8-7: Updating a development database to use numeric variance.

Nulling

The process of nulling is the replacement of sensitive data with a NULL value,
thus rendering the sensitive data unavailable in the development database.
While this certainly protects the sensitive data, since the values are no longer
known in the database, it does present issues if there are dependencies upon
this data or constraints that do not permit a NULL value. Also, use of nulling
can also present difficulties when trying to troubleshoot issues that specifically
involve sensitive data.

To employ this method of masking in a development database, simply use an
UPDATE statement to set the column's value to NULL, as shown in Listing 8-8.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value = NULL
FROM
 dbo.Borrower_Identification;
GO

Listing 8-8: Nulling a database column.

www.manaraa.com

194

Chapter 8: Obfuscation

Truncation

Truncation is a method of protecting sensitive data where a portion of its value
is removed. The concept is very similar to the repeating character masking
covered earlier except that rather than replacing values with a "mask", such as
an "x" or "*", truncating simply discards those values. For example, a Social
Security Number, "555-86-1234", that is stored in plain text might be truncated
to the value of "1234".

One way to apply this method is to permanently modify the stored value in
the database by executing an UPDATE statement using the LEFT, RIGHT or
SUBSTRING system function to define the remaining portion of the value.

For example, the script in Listing 8-9 uses the LEFT function to truncate all but
the last four digits from the Identification_Value column.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 LEFT(Identification_Value,4)
FROM
 dbo.Borrower_Identification;
GO

Listing 8-9: Permanently truncating the Identification_Value column.

Alternatively, in order to maintain the original value but perform the
truncation for viewing, we can simply reference the column in views and
stored procedures that use the LEFT, RIGHT or SUBSTRING system
functions to define the remaining portion of the value. For example, Listing
8-10 returns only the last four digits of the values of the Identification_
Value column.
USE HomeLending;
GO

SELECT
 LEFT(Identification_Value,4) AS Identification_Value
FROM
 dbo.Borrower_Identification;
GO

Listing 8-10: Returning a truncated value.

www.manaraa.com

195

Chapter 8: Obfuscation

Encoding

Encoding is a technique in which a series of characters is used to represent
another value. This technique can be used to camouflage sensitive data, since
the code used has no meaning outside the system in which the code is defined.

NOTE:

There are many benefits to encoding, beyond securing sensitive data,
such as overcoming language barriers when working in an international
environment and providing an expedient means of entering data.

Encoding is a practice that is found in abundance in the health care industry.
The World Health Organization maintains the International Classification of
Diseases (ICD), which is an industry standard that defines codes that represent
diseases and health problems. These codes are used in health records and death
certificates. For example, the ICD code for bacterial pneumonia is J15.9.

In the establishment of foreign keys in the HomeLending database we have,
at a basic level, implemented encoding. The Loan table, for example, contains
two columns that are named Purpose_Type_ID and Mortgage_Type_ID
as illustrated in Figure 8-1 (for a full representation of the HomeLending
schema, see Figure 2-1, in Chapter 2).

Figure 8-1: Loan table with Foreign Key Relationships

The Purpose_Type_ID and Mortgage_Type_ID columns are foreign
keys to the Purpose_Type table and Mortgage_Type table. These tables
contain, respectively, the list of potential purposes for a loan and the types of
available mortgage, as defined in the Uniform Residential Loan Application,

www.manaraa.com

196

Chapter 8: Obfuscation

developed by the Federal National Mortgage Association, commonly known
as Fannie Mae.

In the Purpose_Type table, we have used a sequence of numbers to indicate
these purposes. So, for example, when a new loan record is created, the value
of "2" is captured instead of the value "Refinance".

To further enhance this encoding, we may choose to either utilize a higher
starting number in our sequence, such as "5,000", so that the options can be
organized into logical groups. For example, we may have various types of
refinance options for our borrowers. Through a higher starting number we
could use the value range of 5,000 through 5,100 to represent the available
refinance options, while construction loans might be found in the 2,000
through 2,100 range.

Aggregation

Aggregation is a technique in which identifying details of data are obfuscated
through its provision in a summarized format. A few examples of presenting
data as an aggregation are as follows:

•	 As an average: 40% of the loans originated in the HomeLending
database during the past quarter were refinance loans.

•	 As a calculated sum: $2.5 million in loans were originated in the
HomeLending during the past quarter.

•	 As a geographical statistic: The median home value in the city of
Indianapolis, Indiana is $150,000.

Aggregating is a common technique used to populate data warehouses for data
analysis. This not only protects the underlying sensitive data, but also reduces
the storage requirements for the data.

An advantage of this approach is that the data that is provided to the user is
only that which they need for their reporting and analysis requirements, so the
potential for the leakage of sensitive data is greatly reduced.

A disadvantage to this approach is that if the aggregations are determined to
be inaccurate, the detail data is not available to identify the cause. Another
challenge to this approach is that a given aggregation may not meet everyone's
needs, resulting in requests for different views of the same aggregated data,
which increases your maintenance footprint.

www.manaraa.com

197

Chapter 8: Obfuscation

Within the HomeLending database, aggregation may be beneficial in the
collection of the borrower's liabilities. The current design of the Borrower_
Liability table requires the capture of the monthly payment amount and
remaining balance. As shown in Figure 8-2, the Borrower_Liability table
is related to the Liability_Account table, which reveals the creditor and
account number of the liability.

Figure 8-2: The Borrower_Liability and Liability_Account Tables.

An alternate approach would be to dispose of the Liability_Account table
and simply capture a single record for the loan application, indicating the sum
of their monthly payments and remaining balances for all liabilities, as shown
in Figure 8-3.

Figure 8-3: Alternate approach for Borrower_Liability table.

This level of detail would suffice for most users of this database and would
protect this sensitive information from being inappropriately disclosed.
The Underwriters, who may need access to the detailed liability data for
qualification purposes, would refer to the credit report data, which is stored in
a separate database, to determine whether or not the borrower can be approved
for the loan.

www.manaraa.com

198

Chapter 8: Obfuscation

Artificial Data Generation

As an alternative to these obfuscating techniques, you can generate data using
third party tools, such as Red Gate's SQL Data Generator, which can produce
large volumes of artificial data, based upon regular expressions and predefined
ranges of values.

This provides protection of sensitive data due to the artificial nature of the
data that is generated. In many cases, these third party tools will not execute
internal encryption and obfuscation methods. This should not discourage the
consideration of artificial data generation. This is noted simply to note that
you may need to consider these special methods in a separate process from the
general artificial data generation process.

Summary

In this chapter, we explored some options that are available to protect sensitive
data through obfuscation. The system functions that are available in SQL
Server provide us with the tools that can be employed in our views, stored
procedures and user defined functions to create an effective line of defense.

Once our sensitive data has been secured we will want to identify when an
attacker has gained access to our system and is snooping around for sensitive
data. In addition, we will want to identify when valid users of our database are
taking actions that may be suspicious. This can be done through the auditing
feature of SQL Server 2008, and through a practice known as honeycombing.

www.manaraa.com

199

Chapter 9: Honeycombing a
Database

In the world of network servers, the term "honeypot" refers to a server that
is placed in an environment for the sole purpose of attracting those who are
snooping around, and capturing their activities within the honeypot server.

Honeycombing a database is a very similar approach and involves creating
"decoy" tables within a database that appear to contain valid, and unprotected,
sensitive data. When unauthorized activity occurs on the decoy table, it is
captured in an audit table and a notification is sent to the appropriate parties.

Once the notification is received by the Database Administrator, immediate
termination of the violating user account can occur. Also, the data that is
captured during the unauthorized activity can be reviewed to gain a better
understanding of how unauthorized activities are occurring and identify ways to
prevent them from occurring on the real data.

Until the release of SQL Server 2008, the process of honeycombing a SQL
Server database was very difficult. Triggers could be used to capture the
occurrences of UPDATE, INSERT and DELETE statements; but nothing was
available to capture SELECT statements, beyond running SQL Server Profiler.
With SQL Server 2008's auditing feature, a much wider array of events,
including SELECT statements, are available, with the added advantage that we
don't need to use triggers to capture these events.

This chapter will demonstrate how to create a honeycomb table, audit activity
on it, and send notifications of this activity to the relevant parties.

Implementing a Honeycomb Table

The process of honeycombing a database begins with the creation of a
decoy table. The script in Listing 9-1 creates a honeycomb table in the
default Database Object Schema of our HomeLending database. It has the
mouthwatering name of Customer_Information and the column names,
including First_Name, Social_Security_Number and Address_
Street, are equally likely to attract the attention of the data thief.

www.manaraa.com

200

Chapter 9: Honeycombing a Database

Use HomeLending;
GO

CREATE TABLE dbo.Customer_Information
(
 Customer_ID bigint IDENTITY(100,1) NOT NULL,
 First_Name varchar(50) NOT NULL,
 Last_Name varchar(50) NOT NULL,
 Social_Security_Number varchar(12) NOT NULL,
 Address_Street varchar(250) NOT NULL,
 Address_City varchar(150) NOT NULL,
 Address_State varchar(2) NOT NULL,
 Address_Zipcode varchar(10) NOT NULL
);
GO

Listing 9-1: The Customer_Information Honeycomb table.

One of the goals in honeycombing a database is to capture the casual
exploration of data by users who have limited authorized access to the database.
To open this decoy table to all levels of curiosity, we will grant SELECT,
INSERT, UPDATE and DELETE permissions to the public database role, using
the GRANT statement, as shown in Listing 9-2. All database users are members
of the public database role by default.
Use HomeLending;
GO

GRANT SELECT, INSERT, UPDATE, DELETE
 ON dbo.Customer_Information
 TO public;
GO

Listing 9-2: Open season on the Honeycomb table.

Simply having an empty decoy table in your database will not be sufficient to
draw activity its way. It must be filled with alluring, but bogus, data. The first
rule in populating this decoy table is obviously never to use actual data.

Data scrambling techniques can be applied, as described in Chapter 8, or you
can generate decoy data using a data generator, such as Red Gate's SQL Data
Generator. It is recommended that you populate the decoy table with a number
of rows that is consistent with the non-decoy tables. In our HomeLending
database, SQL Data Generator was used to populate five thousand rows of data,
a sample of which are shown in Figure 9-1.

www.manaraa.com

201

Chapter 9: Honeycombing a Database

Figure 9-1: Screenshot from Red Gate's SQL Data Generator.

Creating a Server Audit

In order to capture the activity of would-be data thieves on our honeycomb
table, we need to implement the auditing feature of SQL Server 2008. The first
step in this process is to create a Server Audit object, which allows us to
monitor a collection of actions that might occur on the target table, and record
this activity in a file, typically the Windows Application log file.

The syntax of the CREATE SERVER AUDIT method is as follows:

CREATE SERVER AUDIT [Audit Name] TO [Output Location]

The arguments to this method are:

•	 Audit Name – the textual reference to the server audit.

•	 Output Location – the options for this argument are:

www.manaraa.com

202

Chapter 9: Honeycombing a Database

•	 FILE: write to a binary file. The file path is required in parenthesis
after "File" is specified.

•	 APPLICATION_LOG: write to the Windows Application Log.
•	 SECURITY_LOG: write to the Windows Security Log.

In Listing 9-3, we create in the Master database a Server Audit object called
Honeycomb_Audit, which will write to the Windows Application Log.
USE Master;
GO

CREATE SERVER AUDIT Honeycomb_Audit
 TO APPLICATION_LOG;
GO

Listing 9-3: Creating the Server Audit object.

Note that the Server Audit object is created at the instance level so the reference
to the database in which the method was executed is not required.

When a Server Audit is created, it is disabled by default and will need to be
enabled in order for it to begin collecting information. Listing 9-4 activates the
Server Audit.
USE Master;
GO

ALTER SERVER AUDIT Honeycomb_Audit
WITH (STATE = ON);
GO

Listing 9-4: Activating the Honeycomb_Audit.

Creating a Database Audit Specification

A Database Audit Specification is a member of the Server Audit and collects
specific information about the database-level events on which the Server
Audit reports. The CREATE DATABASE AUDIT SPECIFICATION method is
executed in SSMS to create a Database Audit Specification. The following is an
example of the syntax of this method:

www.manaraa.com

203

Chapter 9: Honeycombing a Database

CREATE DATABASE AUDIT SPECIFICATION [Specification
Name]
 FOR [Server Audit]
 ADD ([Action] ON [Securable] BY [Principal])
 WITH (STATE = {ON|OFF})

The arguments to this method are:

•	 Specification Name – the textual reference to the Database
Audit Specification.

•	 Server Audit – the textual reference to the Server Audit of which
the Database Audit Specification is a member.

•	 Action – the action or comma delimited list of actions to
be monitored.

•	 Securable – the database object that is to be monitored.

•	 Principal – the Database User, Database Role, or Application Role
that is being monitored.

•	 With State – defines whether the Database Audit Specification is
active (ON) or inactive (OFF).

In the HomeLending database, we will create a Database Audit Specification
with the name of Customer_Information_Spec and capture any SELECT,
INSERT, UPDATE and DELETE events that are performed by the public
database role, as shown in Listing 9-5.
Use HomeLending;
GO

CREATE DATABASE AUDIT SPECIFICATION Customer_Information_
Spec
 FOR SERVER AUDIT Honeycomb_Audit
 ADD (SELECT, UPDATE, INSERT, DELETE
 ON dbo.Customer_Information
 BY public)
 WITH (STATE = ON);
GO

Listing 9-5: Creating the Database Audit Specification object.

All database users are members of the public database role; therefore we will
know when any user executes any of these methods on our decoy table.

www.manaraa.com

204

Chapter 9: Honeycombing a Database

Reviewing the Windows Application Log

By executing a simple SELECT statement against our decoy table, in the
HomeLending database, the Server Audit is initiated. Many pieces of
information are captured in the Windows Application Log, but the most critical
in identifying the event that occurred are shown in Table 9-1.

Log Item Captured Value Description
Source: MSSQL$SQLINSTANCEA The Instance Name

Date: 5/28/2009 6:16:30 AM The Time of the Event

Keywords: Classic,Audit Success Indicates An Audit
Event

Computer: SERVER1 The Server Name

Session_id: 52 The SPID

Server_Principal_Name: SERVER1\John The SQL Server Login

Database_Principal_Name: dbo The Database User

Server_Instance_Name: SERVER1\SQLINSTANCEA The SQL Server
Instance

Database_Name: HomeLending The Database

Schema_Name: dbo The Database Object
Schema

Object_Name: Customer_Information The Table Name

Statement: Select * from customer_
information

The Statement That
Was Executed.

Table 9-1: Critical auditing information captured the Windows Application Log.

The Windows Application Log can be located by navigating to the Windows
Control Panel on the Start Menu and selecting Administrative Tools followed
by Event Viewer. Within the event log, to the upper left, is an icon for the
Windows Application Log.

It is useful to review the Windows Application Log to identify any events that
have occurred on the decoy table, but it is a passive tool and depends upon

www.manaraa.com

205

Chapter 9: Honeycombing a Database

the intentional review of the logs at a given point in time. Unless the DBA
is constantly checking the logs, hours or days could pass before an event on
the decoy table is identified. Instead, the DBA will need to create an alert that
will notify the appropriate parties, through an e-mail or pager, when an event
occurs.

Creating an Operator for Notification

The first step in creating a SQL Server alert is to create an Operator. An
Operator is the person, or people, who will receive an alert when one is raised.
We create an operator by executing the sp_add_operator system stored
procedure in Management Studio. The following is an example of the syntax of
this system stored procedure:

sp_add_operator [Operator Name],[Enabled],
 [Email Address],[Pager Address],
 [Weekday Pager Start],[Weekday Pager End],
 [Saturday Pager Start],[Saturday Pager End],
 [Sunday Pager Start],[Sunday Pager End],
 [Available Pager Days],[Netsend Address],
 [Category]

This system stored procedure's arguments are as follows:

•	 Operator Name – the textual reference to the Operator.

•	 Enabled – indicates whether the Operator can receive notifications.

•	 Email Address – the e-mail address to which notifications are sent
for this Operator. This argument is only necessary when notifying
through e-mail.

•	 Pager Address – all pager notifications are sent through the e-mail
system. The value of this argument will need to be the e-mail account
of the pager that will receive notifications. This argument is only
necessary when notifying through a pager.

•	 Weekday Pager Start/End – the time of day during the weekday
that notifications can be received. The value must be in the format of
HHMMSS (Hour, Minute, Second). 0 indicates midnight.
Despite this argument having the word "Pager" in it, it applies to e-mail

www.manaraa.com

206

Chapter 9: Honeycombing a Database

notifications as well. This argument is only necessary when the
Operator is active on weekdays.

•	 Saturday Pager Start/End – the time of day on Saturday that
notifications can be received. This argument is only necessary when the
Operator is active on Saturdays.

•	 Sunday Pager Start/End – the time of day on Sunday that no-
tifications can be received. This argument is only necessary when the
Operator is active on Sundays.

•	 Available Pager Days – this indicates the days on which the
Operator is available to receive notifications. This value ranges from 0
to 127. This value is determined by adding the assigned values of the
days available. These assigned values are: Sunday (1), Monday (2),
Tuesday (4), Wednesday (8), Thursday (16), Friday (32) and Satur-
day (64). For example: if an Operator is only available on Monday,
Wednesday and Friday, this value would be 42 (2+8+32).

•	 Netsend Address – the network address to which a notification is
to be sent. This argument is only necessary when notifying through
net send.

•	 Category – the category of the Operator. This argument is optional.

Listing 9-6 shows how to create an operator for the DBA, called DBA1, in the
msdb database. Of course, our intrepid DBA is always on call and so they are
available everyday at all hours. Not that long ago, the DBA would have a pager
strapped to them to receive very basic notifications. These days the availability
of email, along with the multi-functional benefits of the cell phone, provide a
means to receive a detailed email message quickly; therefore, the notification in
our example will be sent via email.
USE msdb;
GO

EXEC msdb.dbo.sp_add_operator @name=N'DBA1',
 @enabled=1,
 @weekday_pager_start_time=0,
 @weekday_pager_end_time=235959,
 @saturday_pager_start_time=0,
 @saturday_pager_end_time=235959,
 @sunday_pager_start_time=0,
 @sunday_pager_end_time=235959,

www.manaraa.com

207

Chapter 9: Honeycombing a Database

 @pager_days=127,
 @email_address=N'DBA1@homelending.com';
GO

Listing 9-6: Creating an operator to receive notifications.

Creating an Alert for Notification

Once the operator has been created, we are ready to create our Alert. An Alert
monitors the database for events. When an event occurs, a notification is sent to
the Operators that are assigned to the Alert.

Alerts are dependent upon the SQL Server Agent, which must be running. If the
SQL Server Agent is not running when an Alert is created, a message will be
presented stating that it is not running and that the Alert will not function.

We can create alerts using the sp_add_alert system stored procedure, example
syntax for which is as follows:

sp_add_alert [Alert Name],[Message ID],
 [Severity],[Enabled],
 [Delay Between Responses],[Notification Message],
 [Include Event Description In],[Database Name],
 [Event Description Keyword],[Job ID],
 [Job Name],[Raise SNMP Trap],
 [Performance Condition],[Category Name],
 [WMI Namespace], [WMI Query]

This system stored procedure's arguments are as follows:

•	 Alert Name – the textual reference to the Alert.

•	 Message ID – the value that identifies the message that is sent. In
our case, our messages from the Server Audit are being captured in the
Windows Application Log; therefore we can use the Error ID that is
found in the sysmessages system table.

•	 Severity – the value that indicates the severity of the message sent.
If the Message ID is used, this value must be 0.

•	 Enabled – indicates whether the Alert is active.

www.manaraa.com

208

Chapter 9: Honeycombing a Database

•	 Delay Between Responses – indicates the wait time for a
notification to be sent after a previous notification. The value of 0
indicates that there is no delay.

•	 Notification Message – additional text that is sent with the event
message. This is optional.

•	 Include Event Description In – identifies where the SQL
Server event message should be provided. A value of 0 indicates that
the SQL Server event message is not to be sent. A value of 1 indicates
that it should be included in an e-mail. The other options that are
available for this argument are noted to be removed in later versions of
SQL Server and should be avoided.

•	 Database Name – the database where the event message will occur.

•	 Event Description Keyword – the pattern of characters that will
occur in an event that will trigger a notification. This is necessary only
when filtering events.

•	 Job ID – the id reference to the job that will be launched in response
to the event. This is necessary only when launching a job in response to
an event.

•	 Job Name – the textual reference to the job that will be launched in
response to the event. This is necessary only when launching a job in
response to an event.

•	 Raise SNMP Trap – indicates whether a Simple Network Manage-
ment Protocol (SNMP) trap is raised in response to the event. This is
optional and the default value is 0.

•	 Performance Condition – defines the performance conditions
that will trigger a notification. This is necessary only when using per-
formance events to raise the Alert.

•	 Category Name – the category of the Alert. This is optional.

•	 WMI Namespace – the Windows Management Instrumentation
(WMI) namespace that is referenced by the WMI query. This is
necessary only when using WMI events to raise the Alert.

•	 WMI Query – the query that identifies a WMI event that will
trigger the alert. This is necessary only when using WMI events
to raise the Alert.

Listing 9-7 creates a "Honeycomb Alert" in the msdb database.

www.manaraa.com

209

Chapter 9: Honeycombing a Database

USE msdb;
GO

EXEC msdb.dbo.sp_add_alert @name=N'Honeycomb Alert',
 @message_id=33205,
 @severity=0,
 @enabled=1,
 @delay_between_responses=0,
 @include_event_description_in=1,
 @database_name=N'HomeLending',
 @notification_message=N'Honeycomb Alert';
GO

Listing 9-7: Creating the Honeycomb Alert.

We are capturing our Server Audit events in the Windows Application Log;
therefore we can use the message id of 33205 to identify that a Server Audit
event has occurred.

Creating a Notification

Having created the Alert, Operators will need to be assigned to the Alert to
receive notification messages. This can be accomplished by executing the
sp_add_notification system stored procedure in Management Studio.
The syntax of this system stored procedure is relatively straightforward:

sp_add_notification [Alert Name],[Operator Name],
 [Notification Method]

This system stored procedure's arguments are:

•	 Alert Name – the textual reference to the Alert that will send a
message.

•	 Operator Name – the textual reference to the Operator that will
receive a message.

•	 Notification Method – identifies the method by which the mes-
sage will be sent to the Operator. The values are: 1 (e-mail), 2 (pager),
4 (net send).

Listing 9-8 adds the Operator named DBA1 to the Honeycomb Alert Alert,
and specifies that notification should be sent via e-mail.

www.manaraa.com

210

Chapter 9: Honeycombing a Database

USE msdb;
GO

EXEC msdb.dbo.sp_add_notification
 @alert_name=N'Honeycomb Alert',
 @operator_name=N'DBA1',
 @notification_method = 1;
GO

Listing 9-8: Creating the notification.

For this alert to be successful, the SQL Server Agent must be configured to
send mail. This can be accomplished using the Database Mail Setup Wizard.

Avoid SQL Mail
Please note that SQL Mail is a feature of SQL Server that is
scheduled for retirement; therefore it is recommended to use
Database Mail instead.

The Database Mail Setup Wizard is accessible in Management Studio within
the Management folder in Object Explorer; simply right-click on the "Database
Mail" option and select "Configure Database Mail".

In order to make sure that everything is working as expected, it's worth sending
a test e-mail; simply right-click the Database Mail option and select the "Send
Test E-Mail …" option.

Summary

By creating a honeycomb table, setting up auditing on that table, and enabling a
means to be notified of an audit event, the Database Administrator can identify
the precursors of an attack and respond quickly.

The audit feature of SQL Server 2008 is not limited to monitoring honeycomb
tables. It also offers the ability to capture the occurrence of a wide array
of events that occur on the database and instance giving the Database
Administrator the proverbial "eyes in the back of the head" when identifying
suspicious activities in the database that threaten the security of the sensitive
data that is contained within it.

www.manaraa.com

211

Chapter 10: Layering Solutions

When selecting the security methods that are to be applied to your database, it
is important to understand the intended role of each method, within the overall
security strategy. All methods have their particular strengths and vulnerabilities,
and it is often possible to mitigate the latter.

However, any single security method, be it strategic schema design, encryption,
obfuscation or role-based permissions, will ultimately fall short in the
protection of sensitive data. In order to significantly reduce the risk of sensitive
data being compromised, the DBA must implement a complex layering of
security methods, strategically utilized and maintained within the database.

In the HomeLending database we used a few tables of our schema to
illustrate these security methods; but what would this database look like if
we were to fully implement the protection methods presented in this book
throughout the entire database? In this final, short chapter, we'll take a moment
to consider a fully implemented HomeLending database, based on all of the
presented methods.

View from the Top Floor

At the highest level, we would want to consider the protection of our database
files, including the database backups. In the SQL Server 2005 world, native
options for protecting our physical database files, transaction logs and TempDB
system database are non-existent. We would need to depend on features of
the operating system, and on third party tools, for this level of protection. For
example, Red Gate's SQL Backup Pro offers encryption of the backup files.
In the world of SQL Server 2008, Enterprise Edition, the Transparent Data
Encryption feature would be implemented, offering full protection for the
physical files of the database, as well as its backup files.

www.manaraa.com

212

Chapter 10: Layering Solutions

Design for Protection

Figure 10-1 illustrates how the HomeLending database is organized
into logical groupings. For example, the borrower names reside in the
Borrower_Name table and the borrower's employer data resides in the
Borrower_Employer table.

Figure 10-1: Schema design of the HomeLending database.

The Borrower_Identification, Borrower_Income, Asset_
Account, Liability_Account and Credit_Report tables all contain
sensitive data. Through the normalized design of the database, this sensitive
data is separated from the non-sensitive data. The Credit_Report table takes
advantage of a linked server to further the separation of sensitive data that is
contained within that table.

Applied Permissions and Database Objects

The HomeLending database contains the database roles Sensitive_high,
Sensitive_medium and Sensitive_low, which provides us the means
to control access to database objects. Each database user that exists in the
HomeLending database is assigned membership to one of these database roles.

www.manaraa.com

213

Chapter 10: Layering Solutions

To further elevate the level of overall security for the database, we deny
access to the tables within the database to all database users. Accessing the
data that is contained within the tables is granted through the creation of
views. All INSERT, UPDATE and DELETE commands are funneled through
stored procedures.

Cell-Level and One-Way Encryption

With the basic security features of SQL Server applied to the
HomeLending database, the implementation of cell-level and one-way
encryption can be observed.

The Borrower_Identification, Asset_Account and Liability_
Account tables utilize cell-level encryption to protect the identifying data and
financial account numbers of the borrower. Thanks to the separation that was
provided by the schema design, and the limited permissions that have been
implemented to the views that access this data, the traffic to these columns does
not have a noticeable impact on the performance of the database.

The cell-level encrypted columns take full advantage of the key hierarchy,
including the use of the service master key, which not only provides
cryptography without hard-coding passwords into user defined functions
and stored procedures, but also prevents decryption on another SQL Server
instance, with a different service master key.

Cell-level encryption does present a considerable performance hit when it is
applied to data that is frequently searched. The encrypted Identification_
Value column, within the Borrower_Identification table, presents
such a scenario. It is not uncommon to use a Social Security Number as a
searchable field in which a borrower can be recalled.

The solution that we provide in the Borrower_Identification table is
a second Identification_Value column, containing a salted one-way
encrypted hash. Access to this column is provided to lower level database
roles, by way of a stored procedure specifically designed to perform the hash
comparison and return the search results.

www.manaraa.com

214

Chapter 10: Layering Solutions

Obfuscation

Underwriters would be a group of users that would fall into the Sensitive_
high database role. These individuals review financial details and credit report
details to determine if a borrower qualifies for the loan for which he or she has
applied. Therefore, the Sensitive_high database role will be able to view
the detailed credit report data contained in the Credit_Report linked table.

The Shipping Clerks represent a group of users that would fall into the
Sensitive_medium database role. These individuals gather information
about a loan that will be provided to potential investors. From this information
the investors will decide to purchase the loan from the lender in the secondary
market. There is no need for this group of users to view the details of the credit
report. They are interested in aggregated versions of the data, such as the
borrower's debt-to-income ratio, their credit score and the number of times that
the borrower has been 30 days late with repayments. For the Sensitive_
medium role, the obfuscation method of aggregation is a perfect solution. This
would be offered through a view that is available to this database role.

Eyes in the Back of the Head

A honeycomb table, Customer_Information, and a database audit can be
created to catch those who may snoop about for plain text sensitive data stored
in the HomeLending database. Notification via database mail was set up to
communicate the occurrence of any activity against this table to our DBA.
For a bit of visual deterrence and intimidation, a silver hammer was provided
to the DBA to whack anyone who may be found to have accessed the
honeycomb table.

Good Habits

Performing regular backups of the database, as well as the encryption keys,
will reduce the risk of data and key loss. Storing these backups separately will
reduce the risk of theft of the data and the keys. Also, storing a duplicate copy
of these backup files, at an offsite location, will reduce the risk of data loss due
to a fire or natural disaster.

www.manaraa.com

215

Chapter 10: Layering Solutions

Devices and methods that protect data externally from the database, such
as firewalls, secured network connections and user interface cryptography
methods, are important for a broader security solution that involves data
in transit.

Educate, Educate, Educate

Once the sensitive data has been secured within the database it is important
to educate the users on how to recognize sensitive data and how it should and
should not be communicated. The users will be the target for those who aim
to circumvent your security efforts through social engineering and phishing
attempts. These efforts to glean sensitive data can come from an external as
well as an internal source.

Strong sensitive data handling policies, enforcement of these policies and
continual education are the keys to protecting the data that has been entrusted
to your business, to protecting the reputation of your business and, most
importantly, protecting your customers.

Conclusion

In this book, we have explored the basic concepts of protecting sensitive data in
SQL Server, and executed them against a sample HomeLending database.

Through this exploration, we have learned that all data is not created equally.
There are many contributing factors that determine the sensitivity of a given
piece of data. Regulations, industry standards and corporate policies are major
resources in determining the sensitivity of data.

We have also learned that identity theft prevention, customer privacy,
compliance with regulations, national security and even the survival of
our businesses are some of the motivating factors that will result in the
implementation of the measures discussed in this book.

The process of defining our sensitivity classes, evaluating each column in
our database and assigning these classes to each of them provided us with the
ability to apply the appropriate security measures and data handling policies

www.manaraa.com

216

Chapter 10: Layering Solutions

consistently. The extended properties feature of SQL Server allowed us to
document our data classification efforts. Through the use of catalog views and
system stored procedures, the status of our classification definitions can be
recalled on demand.

The completion of the data classification process led into the definition of
database roles, and the assignment of database users as members of these roles
provided the means by which we could efficiently control access to data in the
various sensitivity classes.

With the data classification process complete, we began to explore the
possibilities that the design of the schema can provide in our efforts to protect
sensitive data. Normalization not only provided us with efficient storage and
performance benefits, but also the separation of sensitive data from data of
lower sensitivity classification.

Through the use of normalization, linked servers, views, permissions and
database schema objects we discovered the tools that are available to improve
the quality of our security and also to make the application of other security
measures easier and more consistent.

Diving into the deep ocean of cryptography revealed to us the encryption
features that are available in SQL Server. The menacing depth of cryptography
was tamed through the discussion of some of the basic concepts as they apply
to SQL Server.

Cell-level encryption, with its fine granularity, provided us with amazing
control of sensitive data access and modification.

Transparent Data Encryption provided protection at a higher level by
encrypting the physical files of the database. Through the higher level of
security, the database files and our data are protected from being stolen and
restored to another location.

One-way encryption granted us a means to encrypt our sensitive data without
the need for decryption and key management. The myth of the invalidity
of this option for protecting sensitive data has been broken and it is now an
indispensible resource for our efforts.

We discovered that cryptography is not the only obfuscation method available
to us in efforts to protect our sensitive data. Through the use of the string
manipulation system functions, we could employ techniques such as character

www.manaraa.com

217

Chapter 10: Layering Solutions

scrambling, repeating character masking, numeric variance, nulling and
truncating. Additional methods of obfuscating sensitive data included encoding,
aggregating and artificial data generation.

Thanks to the auditing feature of SQL Server 2008, we discovered
honeycombing; the process of creating a decoy table to tempt potential
attackers who are searching for sensitive data. By implementing a server
audit and database audit specification on the honeycomb table the Database
Administrator can identify that a potential attack may be underway before
damage or disclosure occurs.

Finally, we have reviewed how all of these items can be applied to the
HomeLending database to provide a layered model for the protection of
sensitive data.

With this knowledge at hand, we can more effectively protect the sensitive data
in our SQL Server database, protect the reputation of our businesses and protect
the privacy of our clients.

"Privacy is not something that I'm merely entitled to, it's an absolute
prerequisite." – Marlon Brando

www.manaraa.com

218

Appendix A: Views and Functions
Reference

Encryption Catalog Views Reference

All of the following catalog views, unless otherwise noted, are available in SQL
Server 2005 as well as SQL Server 2008:

Sys.Asymmetric_Keys

The sys.asymmetric_keys catalog view presents the metadata for the
asymmetric keys that exist in a database. This view can be executed against any
user or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.ASYMMETRIC_KEYS;
GO

Listing A-1: Syntax of sys.asymmetric_keys.

Sys.Certificates

The sys.certificates catalog view presents the metadata for the
certificates that exist in a database. This view can be executed against any user
or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.CERTIFICATES;
GO

Listing A-2: Syntax of sys.certificates.

www.manaraa.com

219

Appendix A: Views and Functions Reference

Sys.Credentials

The sys.credentials catalog view presents the metadata for the credentials
that exist in an instance. Since credentials reside at the instance level, this must
be executed against the master system database.

A credential provides a means for a SQL Server login to authenticate to
a resource that is external from SQL Server, such as Windows Operating
System or a cryptographic provider. A credential can have many SQL Server
logins associated with it; but a SQL Server login can only have one credential
associated with it.
USE master;
GO

SELECT * FROM SYS.CREDENTIALS;
GO

Listing A-3: Syntax of sys.credentials.

Sys.Crypt_Properties

The sys.crypt_properties catalog view presents the metadata for the
properties regarding encryption for the objects in a database. This view can be
executed against any user or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.CRYPT_PROPERTIES;
GO

Listing A-4: Syntax of sys.crypt_properties.

Sys.Cryptographic_Providers

The sys.cryptographic_providers catalog view presents the metadata
for the cryptographic providers that exist in an instance. Since credentials
reside at the instance level, this must be executed against the master system
database.

www.manaraa.com

220

Appendix A: Views and Functions Reference

Cryptographic providers are specific to the Extensible Key Management
(EKM) feature of SQL Server 2008 and are available only in that version. This
feature is discussed in more detail later in this appendix.
USE master;
GO

SELECT * FROM SYS.CRYPTOGRAPHIC_PROVIDERS;
GO

Listing A-5: Syntax of sys.cryptographic_providers.

Sys.Key_Encryptions

The sys.key_encryptions catalog view presents the metadata for the keys
that protect each symmetric key in the database. This view can be executed
against any user or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.KEY_ENCRYPTIONS;
GO

Listing A-6: Syntax of sys.key_encryptions.

Sys.OpenKeys

The sys.openkeys catalog view presents the encryption keys that have been
opened in the current session and remain open. This view can be executed
against any user or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.OPENKEYS;
GO

Listing A-7: Syntax of sys.openkeys.

www.manaraa.com

221

Appendix A: Views and Functions Reference

Sys.Symmetric_Keys

The sys.symmetric_keys catalog view presents the metadata for the
symmetric keys that exist in a database. This view can be executed against any
user or system database within the SQL Server instance.
USE HomeLending;
GO

SELECT * FROM SYS.SYMMETRIC_KEYS;
GO

Listing A-8: Syntax of sys.symmetric_keys.

Built-In Cryptographic Functions Reference

All of the following built-in cryptographic functions are available in SQL
Server 2005 as well as SQL Server 2008:

AsymKey_ID

The built-in cryptographic functions that reference an asymmetric key, such as
EncryptByAsymKey and DecryptByAsymKey, require the id of the key
as a parameter. If the name of the asymmetric key is available, the id can be
obtained through this function. The only argument for this function is the name
of the asymmetric key that is being referenced.
USE HomeLending;
GO

SELECT AsymKey_ID('MyASymKey');
GO

Listing A-9: Syntax of AsymKey_ID.

www.manaraa.com

222

Appendix A: Views and Functions Reference

Cert_ID

The built-in cryptographic functions that reference a certificate, such as
EncryptByCert, DecryptByCert and CertProperty, require the id of
the certificate as a parameter. If the name of the certificate is available, the id
can be obtained through this function. The only argument for this function is
the name of the certificate that is being referenced.
USE HomeLending;
GO

SELECT Cert_ID('MySelfSignedCert');
GO

Listing A-10: Syntax of Cert_ID.

CertProperty

A certification contains properties that are valuable for reference. Through this
function the following properties can be returned:

•	 Expiry_Date: This is the date and time that the certificate is no lon-
ger available for use.

•	 Start_Date: This is the date and time that the certificate becomes
available for use.

•	 Issuer_Name: The X.509 standard identifies the issuer as the entity
that has verified the information within the certificate.

•	 Cert_Serial_Number: The X.509 standard defines this number as
the value that uniquely identifies the certificate.

•	 Subject: The X.509 standard defines the subject as the person or
entity that is identified with the certificate.

•	 Sid: The binary representation of the login security identifier for
the certificate.

•	 String_Sid: The nvarchar representation of the login security identi-
fier for the certificate.

www.manaraa.com

223

Appendix A: Views and Functions Reference

USE HomeLending;
GO

SELECT CertProperty(Cert_ID('MySelfSignedCert'),'Expiry_
Date');
GO

Listing A-11: Syntax of CertProperty.

DecryptByAsymKey

This function is used to decrypt data that has been encrypted with an
asymmetric key. The user performing decryption will require CONTROL
permissions on the asymmetric key that is being referenced.

This function will return the decrypted value as a varbinary value, which
will require the use of the CONVERT function to present the decrypted value as
readable text.
USE HomeLending;
GO

SELECT
 Convert(nvarchar(max),
 DecryptByAsymKey(
 AsymKey_ID('MyASymKey'),
 Identification_Value,
 N'MyStr0ngP@ssword2009'
)
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-12: Syntax of DecryptByAsymKey.

www.manaraa.com

224

Appendix A: Views and Functions Reference

DecryptByCert

This function is used to decrypt data that has been encrypted with a certificate.
The user performing decryption will require CONTROL permissions on the
certificate that is being referenced.

This function will return the decrypted value as a varbinary value which
will require the use of the CONVERT function to present the decrypted value as
readable text.
USE HomeLending;
GO

SELECT
 Convert(nvarchar(max),
 DecryptByCert(
 Cert_ID('MySelfSignedCert'),
 Identification_Value,
 N'MyStr0ngP@ssword2009'
)
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-13: Syntax of DecryptByCert.

DecryptByKeyAutoAsymKey

Based upon the name of this function, you may assume that it would decrypt
data using an asymmetric key; but it is actually used to decrypt data that was
encrypted with a symmetric key. The asymmetric attribution in the function
name reflects that the symmetric key itself is encrypted with an asymmetric
key. This function is a hybrid of the OPEN SYMMETRIC KEY command, which
is required for decrypting data, and the DecryptByKey function, which will
be covered in more detail later in this appendix.

The user performing decryption will require CONTROL permissions on the
asymmetric key that is being referenced to decrypt the symmetric key and
VIEW DEFINITION permissions on the symmetric key that is used to perform
the decryption of the data.

www.manaraa.com

225

Appendix A: Views and Functions Reference

This function will return the decrypted value as a varbinary value, which
will require the use of the CONVERT function to present the decrypted value as
readable text.
USE HomeLending;
GO

SELECT
 Convert(nvarchar(max),
 DecryptByKeyAutoAsymKey(
 AsymKey_ID('MyASymKey'),
 NULL,
 1,
 N'MySymKeyAuthenticator'
)
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-14: Syntax of DecryptByKeyAutoAsymKey.

DecryptByKeyAutoCert

Based upon the name of this function you may assume that it would decrypt
data using a certificate key; but it is actually used to decrypt data that was
encrypted with a symmetric key. The certificate attribution in the function
name reflects that the symmetric key itself is encrypted with a certificate. This
function is a hybrid of the OPEN SYMMETRIC KEY command, which is required
for decrypting data, and the DecryptByKey function, which will be covered
in more detail later in this appendix.

The user performing decryption will require CONTROL permissions on the
certificate that is being referenced to decrypt the symmetric key and VIEW
DEFINITION permissions on the symmetric key that is used to perform the
decryption of the data.

www.manaraa.com

226

Appendix A: Views and Functions Reference

USE HomeLending;
GO

SELECT
 Convert(nvarchar(max),
 DecryptByKeyAutoCert(
 Cert_ID('MySelfSignedCert'),
 NULL,
 1,
 N'MySymKeyAuthenticator'
)
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-15: Syntax of DecryptByKeyAutoCert.

DecryptByKey

This function is used to decrypt data that has been encrypted with a symmetric
key. The execution of this function is dependent upon the symmetric key being
opened prior to its call.

The user performing decryption will require VIEW DEFINITION permissions
on the symmetric key that is being referenced. If the symmetric key itself is
encrypted by a certificate or asymmetric key, CONTROL permissions on the
certificate or asymmetric key is required.

This function will return the decrypted value as a varbinary value, which
will require the use of the CONVERT function to present the decrypted value as
readable text.

NOTE:

To use symmetric keys in the encryption and decryption process they must
first be opened. Once the key is opened, using the OPEN SYMMETRIC
KEY command, it remains open until it is explicitly closed, using the
CLOSE SYMMETRIC KEY command, or the session is terminated.

www.manaraa.com

227

Appendix A: Views and Functions Reference

USE HomeLending;
GO

OPEN SYMMETRIC KEY MySymKey
 DECRYPT BY PASSWORD = N'MyStr0ngP@ssword2009';
GO

SELECT
 Convert(nvarchar(max),
 DecryptByKey(Identification_Value)
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

CLOSE SYMMETRIC KEY MySymKey;
GO

Listing A-16: Syntax of DecryptByKey.

DecryptByPassphrase

This function is used to decrypt data that has been encrypted with a key that is
generated from a passphrase. The user performing decryption will require the
knowledge of the passphrase that was used during the encryption process.

This function will return the decrypted value as a varbinary value, which
will require the use of the CONVERT function to present the decrypted value as
readable text.
USE HomeLending;
GO

SELECT
 Convert(nvarchar(max),
 DecryptByPassphrase(
 'The Crow Flies At Midnight.',
 Identification_Value
)
)
FROM
 dbo.Borrower_Identification

www.manaraa.com

228

Appendix A: Views and Functions Reference

WHERE
 Borrower_ID = 1;
GO

Listing A-17: Syntax of DecryptByPassphrase.

EncryptByAsymKey

This function is used to encrypt data with an asymmetric key. No specific
permissions need to be granted to a user in order to use this function.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByAsymKey(
 AsymKey_ID('MyASymKey'),
 Identification_Value
)
WHERE
 Borrower_ID = 1;
GO

Listing A-18: Syntax of EncryptByAsymKey.

EncryptByCert

This function is used to encrypt data with a certificate. No specific permissions
need to be granted to a user in order to use this function.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByCert(
 Cert_ID('MySelfSignedCert'),
 Identification_Value
)
WHERE
 Borrower_ID = 1;
GO

Listing A-19: Syntax of EncryptByCert.

www.manaraa.com

229

Appendix A: Views and Functions Reference

EncryptByKey

This function is used to encrypt data with a symmetric key. The execution
of this function is dependent upon the symmetric key being opened prior to
its call.
USE HomeLending;
GO

OPEN SYMMETRIC KEY MySymKey
 DECRYPT BY PASSWORD = N'MyStr0ngP@ssword2009';
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByKey(
 Key_GUID('MySymKey'),
 Identification_Value
)
WHERE
 Borrower_ID = 1;
GO

CLOSE SYMMETRIC KEY MySymKey;
GO

Listing A-20: Syntax of EncryptByKey.

EncryptByPassphrase

This function is used to encrypt data with a key that is generated from
a passphrase.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByPassphrase (
 'The Crow Flies At Midnight.',
 Identification_Value
)
WHERE
 Borrower_ID = 1;
GO

Listing A-21: Syntax of EncryptByPassphrase.

www.manaraa.com

230

Appendix A: Views and Functions Reference

Key_ID

The catalog views that reference a symmetric key, such as sys.symmetric_
keys and sys.key_encryptions, can have their results filtered based off
the id of the symmetric key. If the name of the symmetric key is available, the
id can be obtained through this function. The only argument for this function is
the name of the symmetric key that is being referenced.
USE HomeLending;
GO

SELECT Key_ID('MySymKey');
GO

Listing A-22: Syntax of Key_ID.

Key_GUID

The built-in cryptographic functions that reference a symmetric key, such as
DecryptByKey, require the globally unique identifier of the symmetric key as
a parameter. If the name of the symmetric key is available, the globally unique
identifier can be obtained through this function. The only argument for this
function is the name of the symmetric key that is being referenced.
USE HomeLending;
GO

SELECT Key_GUID('MySymKey');
GO

Listing A-23: Syntax of Key_GUID.

SignByAsymKey

This function digitally signs the plain text data that is passed through its
arguments with an asymmetric key. This function is often used in conjunction
with the EncryptByAsymKey function.

Successful digital signing requires the user to have CONTROL permissions on
the asymmetric key that is being used to generate the digital signature.

www.manaraa.com

231

Appendix A: Views and Functions Reference

USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByAsymKey(
 AsymKey_ID('MyASymKey'),
 Identification_Value
),
 Value_DigSig =
 SignByAsymKey (
 AsymKey_ID('MyASymKey'),
 Identification_Value,
 N'MyStr0ngP@ssw0rd2009'
)
WHERE
 Borrower_ID = 1;
GO

Listing A-24: Syntax of SignByAsymKey.

SignByCert

This function digitally signs the plain text data that is passed through its
arguments with a certificate. This function is often used in conjunction with the
EncryptByCert function.

Successful digital signing requires the user to have CONTROL permissions on
the certificate that is being used to generate the digital signature.
USE HomeLending;
GO

UPDATE dbo.Borrower_Identification
 SET Identification_Value =
 EncryptByCert(
 Cert_ID('MySelfSignedCert'),
 Identification_Value
),

www.manaraa.com

232

Appendix A: Views and Functions Reference

 Value_DigSig =
 SignByCert (
 Cert_ID('MySelfSignedCert'),
 Identification_Value,
 N'MyStr0ngP@ssw0rd2009'
)
WHERE
 Borrower_ID = 1;
GO

Listing A-25: Syntax of SignByCert.

VerifySignedByAsymKey

This function determines if the encrypted data has changed since it was
digitally signed. The returned value is either a 1, which indicates that the data
has not changed, or 0 which indicates that the data has changed. This function
is often used in conjunction with the DecryptByAsymKey function.

Successful digital signature verification requires the user to have VIEW
DEFINITION permissions on the asymmetric key that was used to generate the
digital signature.
USE HomeLending;
GO

SELECT
 VerifySignedByAsymKey(
 AsymKey_ID('MyASymKey'),
 Convert(nvarchar(max),
 DecryptByAsymKey(
 AsymKey_ID('MyASymKey'),
 Identification_Value,
 N'MyStr0ngP@ssword2009'
)
),
 N'MyStr0ngP@ssword2009'
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-26: Syntax of VerifySignedByAsymKey.

www.manaraa.com

233

Appendix A: Views and Functions Reference

VerifySignedByCert

This function determines if the encrypted data has changed since it was
digitally signed. The returned value is either a 1, which indicates that the data
has not changed, or 0 which indicates that the data has changed. This function
is often used in conjunction with the DecryptByCert function.

Successful digital signature verification requires the user to have VIEW
DEFINITION permissions on the certificate that was used to generate the
digital signature.
USE HomeLending;
GO

SELECT
 VerifySignedByCert(
 Cert_ID('MySelfSignedCert'),
 Convert(nvarchar(max),
 DecryptByCert(
 Cert_ID('MySelfSignedCert'),
 Identification_Value,
 N'MyStr0ngP@ssword2009'
)
),
 N'MyStr0ngP@ssword2009'
)
FROM
 dbo.Borrower_Identification
WHERE
 Borrower_ID = 1;
GO

Listing A-27: Syntax of VerifySignedByCert.

String Manipulation Function Reference

All of the following system functions provide support for the ability to
manipulate strings of characters that is available in SQL Server 2005 as well as
SQL Server 2008:

www.manaraa.com

234

Appendix A: Views and Functions Reference

ASCII and CHAR

The ASCII and CHAR system functions provide the conversion functionality
between character values and ASCII code values. These system functions
are valuable when iterating through characters, mathematically determining
characters and randomly deriving characters.

The American Standard Code for Information Interchange (ASCII) is a coding
scheme that is used by computers. The ASCII codes range from 0 to 255. The
ASCII codes for the standard, upper case, English alphabet ranges from 65
(A) to 90 (Z). The ASCII codes for the standard, lower case, English alphabet
ranges from 97 (a) to 122 (z).

The ASCII system function returns the ASCII code value of a given character.
The argument to this function is the character to which the ASCII code is
requested. For example, passing the value of "A" will return the value of 65.

The CHAR system function returns the character of a given ASCII value. The
argument to this function is the ASCII code to which the character value is
requested. For example, passing the value of 65 will return the value of "A".
--Returns "65"
SELECT ASCII('A');
GO

--Returns "A"
SELECT CHAR(65);
GO

Listing A-28: The ASCII and CHAR functions.

LEFT, RIGHT and SUBSTRING

The LEFT, RIGHT and SUBSTRING system functions provide the functionality
of obtaining a portion of a value. These system functions are valuable for
concatenating a portion of a value to another string during masking processes.

The LEFT system function returns a portion of the value passed, based upon
a defined number of characters from its beginning, or left most character. The
value returned is either a varchar (for non-unicode values) or nvarchar (for
unicode values) data type.

www.manaraa.com

235

Appendix A: Views and Functions Reference

The RIGHT system function returns a portion of the value passed, based upon a
defined number of characters from its ending, or right most character. The value
returned is either a varchar (for non-unicode values) or nvarchar (for unicode
values) data type.

The arguments for the LEFT and RIGHT system functions are:

•	 Expression: This is the value in which a portion will be returned.
The data type can be any type that can be implicitly converted to var-
char or nvarchar data types.

•	 Characters_To_Return: This is the number of characters that are
to be returned.

The SUBSTRING system function returns a portion of the value passed, based
upon a defined number of characters from a defined beginning position within
the value. The value returned can be varchar, nvarchar, or varbinary, depending
upon the data type of the value passed into the system function.

The arguments for the SUBSTRING system function are:

•	 Expression: This is the value in which a portion will be returned.
The data type can be any type that can be implicitly converted to
varchar or nvarchar data types.

•	 Start_Position: This is a number that represents the position
within the expression that will define the starting point of the value to
be returned.

•	 Characters_To_Return: This is the number of characters that are
to be returned.

--Returns "This"
SELECT LEFT('This is a string',4);
GO
--Returns "ring"
SELECT RIGHT('This is a string',4);
GO

--Returns "a st"
SELECT SUBSTRING('This is a string',9,4);
GO

Listing A-29: LEFT, RIGHT, and SUBSTRING functions.

www.manaraa.com

236

Appendix A: Views and Functions Reference

REPLACE

The REPLACE system function provides the functionality of replacing all
occurrences of a given value with another value. This system function is
valuable for masking processes. If the value that is passed into this system
function is an nvarchar data type, the value returned will be nvarchar;
otherwise this will return a varchar data type.

The arguments for the REPLACE system function are:

•	 Expression: This is the value that is to be evaluated in this system
function. The data type can be any type that can be implicitly converted
to varchar or nvarchar data types.

•	 Search_Pattern: This is the value that is being sought within the
expression to be replaced.

•	 Replace_Pattern: This is the value that will replace the search pat-
tern when found.

--Returns "Thwas was a string"
SELECT REPLACE('This is a string','is','was');
GO

Listing A-30: Using the REPLACE function.

REPLICATE and SPACE

The REPLICATE and SPACE system functions provide the functionality
of repeating a value for a number of iterations. These system functions are
valuable during masking processes.

The REPLICATE system function returns a given value for a given number
of iterations. The data type that is returned is the same as the data type passed
into the expression argument. The maximum iterations that will be returned are
8,000.

The arguments for the REPLICATE system function are:

•	 Expression: This is the value that is to be evaluated in this system
function.

•	 Iteration_Count: This is the number of iterations to which the
expression is to be repeated.

www.manaraa.com

237

Appendix A: Views and Functions Reference

The SPACE system function returns a space (" ") for a given number of
iterations. The data type that is returned is char. The maximum iterations
that will be returned are 8,000. If the resulting value is to be concatenated to
unicode values, the REPLICATE system function should be used instead of the
SPACE system function.

The arguments for the SPACE system function are:

•	 Iteration_Count: This is the number of iterations to which a space
is to be repeated.

--Returns "XXXXXXXXXX"
SELECT REPLICATE('X',10);
GO

--Returns " "
SELECT SPACE(10);
GO

Listing A-31: Using REPLICATE and SPACE.

REVERSE

The REVERSE system function provides the functionality of reversing the
order of characters that are contained in a given value. This system function
is valuable for masking processes. If the value that is passed into this system
function is of the nvarchar data type, the value returned will be nvarchar;
otherwise this will return a varchar data type.

The arguments for the REVERSE system function are:

•	 Expression: This is the value that is to be evaluated in this system
function. The data type can be any type that can be implicitly converted
to varchar or nvarchar data types.

--Returns "gnirts a si sihT"
SELECT REVERSE('This is a string');
GO

Listing A-32: REVERSE a string.

www.manaraa.com

238

Appendix A: Views and Functions Reference

STUFF

The STUFF system function provides the functionality inserting a given value
into another given value, replacing a given number of characters. This system
function is valuable for masking processes. The data type that is returned is the
same as the data type passed into the expression argument.

The arguments for the STUFF system function are:

•	 Expression: This is the value that is to be evaluated in this
system function.

•	 Start_Position: This is a number that represents the position
within the expression that the inserting value will be inserted.

•	 Delete_Characters: This is a number that represents the charac-
ters that will be removed from the expression when the inserting value
is placed.

•	 Inserting_Value: This is the value that will be inserted into
the expression.

--Returns "ThBubba is a string"
SELECT STUFF('This is a string',3,2,'Bubba');
GO

Listing A-33: STUFF a string.

RAND

The RAND system function, when called, returns a random value of the float
data type.

The only argument for the RAND system function is Seed, which is the value
that defines the starting point in which the random number is derived. If the
system function is called repeatedly with the same seed value it will always
return the same value. If this argument is not included, the database engine will
produce a random seed value.
-- With a seed value defined
-- Will always return 0.715436657367485
SELECT RAND(100);

Listing A-34: Using the RAND function.

www.manaraa.com

239

Appendix B: The HomeLending
database

Throughout this book, a sample database, called HomeLending, is used to
illustrate the security, schema design, encryption and obfuscation methods that
are available in SQL Server. All of the coding examples that are provided in
this book were written using SQL Server 2008 SP1, Developer Edition.

The script that is used to create the HomeLending database as well as all of
the examples provided in this book can be found at the following URL:

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

Within the downloaded compressed folder are the following files:

Database Creation Scripts

•	 CreateHomeLendingDB.sql
This file will create the physical files (.mdf/.ldf) for the
HomeLending database.

•	 CreateHomeLendingTables.sql
This file will create the tables for the HomeLending database.

•	 CreateHomeLendingRelationships.sql
This file will create the relationships for the tables of the
HomeLending database.

Database Roles, Users and Schema Scripts

•	 CreateRolesUsers_Chapter2.sql
This file will create the database roles, users and role memberships for
the HomeLending database.

•	 ExtendedProperties_Chapter2.sql
This file will create the extended properties for the HomeLending
database table columns.

http://www.simple-talk.com/RedGateBooks/JohnMagnabosco/HLSchema.zip

www.manaraa.com

240

Appendix B: The HomeLending database

•	 ArchitectureStrategies_Chapter3.sql
This file will create database schema objects, views and linked servers.

Encryption Scripts

•	 CreateKeysCerts_Chapter4.sql
This file will create encryption keys and certificates.

•	 CreateCryptographicProvider_Chapter4.sql
(SS2008 Only)
This file will create a cryptographic provider for the Extensible Key
Management feature.

•	 BackupKeysCerts_Chapter4.sql
This file will back up the encryption keys and certificates.

•	 CellLevelEncryption_Chapter5.sql
This file will implement cell-level encryption on a single column
in the HomeLending database.

•	 TransparentDataEncryption_Chapter6.sql (SS2008 Only)
This file will implement transparent data encryption for the
HomeLending database.

•	 TDERestoreReversal_Chapter6.sql
This file will restore and reverse the implementation of TDE.

•	 OneWayEncryption_Chapter7.sql
This file will implement one-way encryption.

Obfuscation and Honeycombing Scripts

•	 Obfuscation_Chapter8.sql
This file will create various obfuscation methods.

•	 Honeycombing_Chapter9.sql (SS2008 Only)
This file will create a honeycomb table as well as a database audit.

Please note that it is highly discouraged to implement the provided sample
code, either entirely or in part, on an instance of SQL Server that is actively
utilized for production activity. All sample code is provided for illustrative
purposes only and are provided “as is” without any warranties or guarantees

www.manaraa.com

241

Appendix B: The HomeLending database

of any kind, either expressed or implied. In no event shall the author or
publisher be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages arising in any way out of the use of the provided
sample code.

Creating the HomeLending Database

To create the HomeLending database, perform the following instructions:

•	 Download the compressed folder HLSchema.zip from the previously
provided URL.

•	 Open SQL Server Management Studio (SSMS) and connect to the
desired SQL Server instance.

•	 Open the file named CreateHomeLendingDB.sql in SSMS.

•	 Modify the FILENAME argument in the CREATE DATABASE com-
mand to the desired location of the database’s .mdf and .ldf files.

•	 Execute the script.

If SSMS is not available in the start menu, you can typically find the location of
this program at:

SQL Server 2008 SSMS:
 C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\
IDE\Ssms.exe

SQL Server 2005 SSMS:
C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\
IDE\SqlWb.exe

www.manaraa.com

242

Appendix B: The HomeLending database

Creating the HomeLending Database Tables

Once the script for the HomeLending database has been successfully
completed, the tables can be created through the following instructions:

•	 Open the file named CreateHomeLendingTables.sql in SSMS.

•	 Execute the script.

•	 Open the file named CreateHomeLendingRelationships.sql
in SSMS to create the foreign keys for the newly created tables.

•	 Execute the script.

At this point the HomeLending database has been created; but is empty. It
is recommended to use a tool, such as Red Gate’s SQL Data Generator, to
produce the data for this sample. Many of these tools make their best guess as
to the format of the data that is being populated. You may want to review these
definitions and modify them as needed to populate your database with data that
has the appearance of real data.

You can download a trial of Red Gate’s SQL Data Generator at:
http://www.red-gate.com/products/SQL_Data_Generator/index.htm

Executing Subsequent Scripts

As you progress through this book there will be sample code provided that
can be used on the HomeLending database. Simply perform the following to
execute these scripts:

•	 Open the desired script file in SSMS.

•	 Execute the desired portion of the script.

There are some scripts that reference a physical location through a drive and
folder specification. Please modify these according to your environment prior
to execution.

http://www.red-gate.com/products/SQL_Data_Generator/index.htm

www.manaraa.com

243

Symbols
128-bit RC4 101
.bak 137
@@IDENTITY 132
.ldf 137
.mdf 137

A
abstraction 67
Administrative Tools 204
Advanced Encryption Standard 100
AES

AES 128 100
AES 192 100
AES 256 100

aggregated data 28, 196
Aggregating 184
Alert 207
algorithm 37, 89
ALL 52
ALTER 49
ALTER ANY USER 48
ALTER TABLE 123, 169
ANSI-92 51
Application Role 44
ArchitectureStrategies_Chapter3.sql 240
argument 77
Artificial Data Generation 184
ASCII (American Standard Code for

Information Interchange)
 234

AsymKey_ID 103, 221
asymmetric key 46, 91
Attack Dictionary 161
auditing 199
Australian Privacy Act, 1988 27
AUTHORIZATION 77

B
Backup

BACKUP CERTIFICATE 98, 141,
144

back up files 75
BackupKeysCerts_Chapter4.sql 240
BACKUP MASTER KEY 98, 141
backup media 141
BACKUP SERVICE MASTER KEY

98, 141
Behavioral biometrics 27
biometric data 26
Biometric Institute Privacy Code 27
Birthday Paradox 164
block cipher 100
boot record 141
built-in cryptographic functions 221

C
California Information Practices Act 29
Canada, Personal Information Protection

and Electronic Information Act 19
catalog view 54, 218
cell-level encryption xvii
CellLevelEncryption_Chapter5.sql 240
Cert_I 222
Cert_ID 103
certificate 46, 91
CertProperty 103, 223
CHAR 234
Character

Character_Mask 188
Character_Scramble 186
character scrambling 182, 184

checkpoint 142
Chief Information Officer 64
Chief Security Officer 64
Children's Online Privacy Protection Act,

1988 29
cipher text 89
CLOSE SYMMETRIC KEY 131
CLR 104
COALESCE 128
Company Tax Reference (UK) 25
complex joins 79
confidentiality 69
Configure Database Mail 210
CONTROL 53

Index

www.manaraa.com

244

Index

CONTROL permissions 142
CONVERT 111, 223
CREATE

CREATE ASYMMETRIC KEY 92
CREATE CERTIFICATE 93, 144
CREATE CRYPTOGRAPHIC PRO-

VIDER 97
CreateCryptographicProvider_Chap-

ter4.sql 240
CREATE DATABASE AUDIT SPECI-

FICATION 202
CREATE DATABASE ENCRYPTION

KEY 95, 145
CreateHomeLendingDB.sql 239
CreateHomeLendingRelationships.

sql 239
CreateHomeLendingTables.sql 239
CreateKeysCerts_Chapter4.sql 240
CREATE LOGIN 46
CREATE MASTER KEY 92, 143
CREATE ROLE 45
CreateRolesUsers_Chapter2.sql 239
CREATE SCHEMA 76
CREATE SERVER AUDIT 201
CREATE SYMMETRIC KEY 94
CREATE USER 47
CREATE VIEW 80

crypto-analysis 96
cryptographic provider 219
cryptography xiv

D
Damage Potential 62
Data

at rest 35
classification xvii
classification and roles 39
data manipulation language (DML)

xvii
data warehouses 196
handling policies 39
identifiable 20
in transit 35
personal 20

retention policies 41
sensitive 20
unprotected xvii

Database
Administrator xiv, 55
Architect 55
Audit Specification 202
backup media 141
column 39
columns xvi
Database Mail 38, 210
Database Mail Setup Wizard 210
encrypted connections 140
encryption key 95, 136
HomeLending xvii
honeycombing 38
Master 137
master database 46
Master database 136, 137
master keys 91
MS Access 84
msdb 208
object schemas 37
OLE DB (Object Linking Embedding

Database) 83
on-line analytic processing (OLAP) 70
on-line transaction processing (OLTP)

69
Oracle 85
relationships xvi
roles 39
Roles 39, 44
tables xvi
TDE-enabled 139
TempDB database 139
views 37

Data Definition Language DDL)
 51

DATALENGTH 188
Data Manipulation Language (DML)

 50
DB2 84
DBA 36
dbo schema 48
db_owner 49

www.manaraa.com

245

Index

deciphering 89
decoy table 199
Decrypt 89

DecryptByAsymKey 103, 223
DecryptByCert 103, 224
DecryptByKey 103, 227
DecryptByKeyAutoAsymKey 103,

225
DecryptByKeyAutoCert 103, 226
DecryptByPassphrase 228
DecryptByPassPhrase 103
DECRYPTION BY PASSWORD 145

default schema 46
DELETE

permissions 51
statements 51

DENY 53
DES 100
DESX 100
development environment 182
dictionary attack 160
digitally signing 102
digital signatures 157
dirty pages 146
download xvii
Driver's License Number 25
DROP COLUMN 173
Dynamic management view (DMV) 147

E
Electronic Disclosure 64
Employer Identification Number (USA)

25
encoding 38, 184
Encrypt 89

EncryptByAsymKey 103, 228
EncryptByCert 103, 228
EncryptByKey 103, 229
EncryptByPassphrase 103, 229
ENCRYPTED BY PASSWORD 98
Encrypt 143

encrypted database connections
Encrypt 140

Encryption xv

database encryption key 95
ENCRYPTION BY MASTER KEY

143
ENCRYPTION BY PASSWORD 144
Encryption 95

encryption keys xv, 89
encryption scan 146

ending hash 162
EST

Eastern Standard Time 149
European Community

EC Directive 2002/58/EC 30
EC Directive on Data Protection 23
EC Safe Harbor Network 23

Event Viewer 204
EXECUTE 52
EXECUTE AS USER 121, 151
EXISTS 105
ExtendedProperties_Chapter2.sql 239
Extensible Key Management (EKM) 94

F
Fannie Mae

Fannie Mae 1003 40
Federal National Mortgage Associa-

tion 196
Federal Educational Rights and Privacy

Act (FERPA) 28
Feedback xviii
FILESTREAM 141
filtering 79
fingerprint readers 97
first normal form 70
fn_listextendedproperty 60
foreign key 70, 176
fully qualified names 78

G
General Index Reference Number (India)

25
GETDATE 103
GetHashSalt 166

www.manaraa.com

246

Index

Gramm-Leach-Bliley Act (GLBA) 26, 32
GRANT 52
GRANT EXECUTE 186
granularity 107
Greenwich Mean Time (GMT) 149
grouping 79
GUID (globally unique identifier) 26

H
hacker 22
Hash

Hashbytes 158
hash collision 164
hash value 157, 160
one-way encryption 37

Health Insurance Portability and Account-
ability Act (HIPAA) 28

hierarchy 90
HLSchema.zip 241
honeycombing 199
Honeycombing 38
Honeycombing_Chapter9.sql 240
honeypot 199
HSM

Hardware Security Modules 97

I
identity theft xiv
impersonate 151
Indiana Code § 9-24-6-2 26
Individual Taxpayer Identification

Number (USA) 25
industry standards 19
INFORMATION_SCHEMA.COLUMNS

54
initial hash 162
INSERT 51
integrity 69
International Classification of Diseases

(ICD) 195
Internet protocol security (IPSec) 141
Internet X.509 Private Key Infrastructure

(PKI) 93

K
Key

key fatigue 96
Key_GUID 103, 230
Key_ID 103, 230
key length 101
key lifecycle 97
key management 96
keystream 100
private key 91, 144
public key 92

L
layered model 217
leakage 196
LEFT 194
linked servers 67
Login accounts 43
LOWER 188

M
manipulate strings 233
masking 38, 182
master database 46, 136, 137
membership 39
Message Digest 102

MD2 102
MD4 102
MD5 102

metadata 90
Military information 23
MS Access 84
msdb database 208

N
namespace 75
National Insurance Number (UK) 25
Network Administrator 36
non-unicode 234
normal form 69
Normalization 67

www.manaraa.com

247

Index

notification messages 209
NULL 111, 193
nulling 182
Nulling 184
Numeric Variance 182, 184

Numeric_Variance 191

O
Obfuscation 183

encoding 38
masking 38
Obfuscation_Chapter8.sql 240
truncation 38

Object Explorer 56
Object Linking Embedding Database

(OLE DB) 83
obscurity 73, 183
One-way encryption 157

hashing 37
OneWayEncryption_Chapter7.sql 240

on-line analytic processing database
(OLAP) 70

on-line transaction processing database
(OLTP) 69

OPEN SYMMETRIC KEY 116, 224
Operator 205
Oracle 84
owner 77

P
Passport Data 25
password 44
Payment Card Industry Data Security

Standard (PCI DSS)
Requirement 3 35
Requirement 4 35
Topic 3 24

performance degradation 138
Permanent Account Number (India) 25
Permanent Resident Alien Number (USA)

25
permissions xv
phish 36

physical data files 75
Physiological biometrics 26
plain text 89
Preparer Taxpayer Identification Number

(USA) 25
primary account number 24
primary account number (PAN) 34
primary key 26, 70
Privacy 22
privacy policies 23
private key 91, 144
public database role 200
public key 92

R
Rainbow table 162

rainbow table attack 162
RAND 184, 238
random value 184
RC2. See Rivest Cipher
RC4. See Rivest Cipher
reduction chain 162
REFERENCES 52
regular expressions 198
regulations xiii
Repeating Character Mask 184, 188
REPLACE 184, 236
REPLICATE 184, 190, 236
replication 141
REVERSE 237
REVERT 151
REVOKE 53
RIGHT 194
Rivest Cipher 101

RC2 101
RC4 101

Rivest/Shamir/Adleman (RSA) 101
RSA 512 101
RSA 1024 101
RSA 2048 101

Roles 43
application 44
database 44
server 44

www.manaraa.com

248

Index

Rosetta Stone 89

S
salt 110, 162
scalar-valued user defined function 51
schema xv
schema architecture 67
scope qualifier 77
second normal form 71
Secure Hash Algorithm (SHA) 102

SHA1 102
Secure Sockets Layer (SSL) 88
Security Officer xiv
seed value 238
SELECT 51
SELECT clause 159
SELECT permissions 152
self-signed certificate 93, 144
sensitive data xiii
sensitive information xiv
sensitivity classes 39
Server Roles 44
service master key 91
SET ENCRYPTION ON 146
SignByAsymKey 103, 231
SignByCert 103, 232
Simple Network Management Protocol

(SNMP) 208
smartcards 97
social engineering 36, 215
Social Security Number (USA) 25
SPACE 236
sp_addextendedproperty 57
sp_addlinkedserver 85
sp_addlinkedsrvlogin 86
sp_add_notification 209
sp_add_operator 205
sp_addrolemember 48
sp_setapprole 44
sp_updateextendedproperty 60
SQL Backup Pro 211
SQL Data Generator 40, 198
SQL Doc 54
SQL injection xiv

SQL Mail 210
SQL Server

extended properties 39
SQL Server 2008
Developer Edition 137
Enterprise Edition 137

SQL Server Agent 207
SQL Server database xiv
SQL Server instance 44
SQL Server Login 44
SQL Server Management Studio

(SSMS) 45
SQL Server Profiler 199

SqlWb.exe 241
Ssms.exe 241
Start Menu 204
Stored Communications Act (SCA) 30
stored procedure 51
stream cipher 100
STUFF 238
SUBSTRING 184, 194
summing 79
symmetric key 94
sys.asymmetric_keys 93, 218
Sys.Asymmetric_Keys 105
sys.certificates 218
Sys.Certificates 105
sys.credentials 219
Sys.Credentials 105
sys.cryptographic_providers 219
Sys.Cryptographic_Providers 105
sys.crypt_properties 219
Sys.Crypt_Properties 105
sys.databases 147
sys.dm_database_encryption_keys 146
sys.dm_database_encryption_keys DMV

147
sys.extended_properties 61
sys.key_encryptions 118, 143, 220
Sys.Key_Encryptions 105
sys.openkeys 220
Sys.OpenKeys 105
sys.symmetric_keys 91, 221
Sys.Symmetric_Keys 105
system metadata function 60

www.manaraa.com

249

Index

T
table 51
table scans 109
table-valued user defined function 51
TAKE OWNERSHIP 53
Tax File Number (Australia) 25
TempDB database 139
test environments 182
third normal form 71
trade secret 33
transaction logs 75
Transformation 104
transparency 136
Transparent Data Encryption (TDE) xvii,

136
TDE-enabled database 139
TDERestoreReversal_Chapter6.sql 240
TransparentDataEncryption_Chapter6.

sql 240
transport layer security (TLS) 89
triggers 199
Triple_DES 100

Triple_DES_3KEY 100
Truncating 184
Truncation 37
TRY…CATCH 131

U
UK Data Protection Act, 1998 19
unauthorized person xiv
unicode 234
Uniform Residential Loan Application

Fannie Mae 1003 40
Unique Tax Payer Reference (UK) 25
UPDATE 51

permissions 51
statements 51

updateable query 78
US Dept. of Education 28
US Dept of Health and Human Services'

Privacy Rule of the Health Insurance
Portability and Accountability Act 19

US Economic Espionage Act, 1996 33

US Federal Privacy Act, 1974 29
US Federal Trade Commission 22
US Financial Privacy Act, 1978 24
US Identity Theft and Assumption Deter-

rence Act 22
US National Security Agency 101
US Right to Financial Privacy Act, 1978

31
US Sarbanes-Oxley Act, 2002 (SOX) 31
US Uniform Trade Secrets Act (UTSA)

33

V
Value Added Tax Identification Number

(EU) 25
varbinary 109
varchar 112
Verbal Disclosure 64
VerifySignedByAsymKey 103, 232
VerifySignedByCert 103, 233
view 51
VIEW DEFINITION 53
VIEW DEFINITION permissions 224
virtualized table 78
VLF

virtual log file 146
vwRandom 186

W
WHERE clause 110, 159
Windows

Windows Application Log 202
Windows Control Panel 204
Windows Data Protection API (DPAPI)

91
Windows domain account 46
Windows Login 44
Windows Operating System 219
Windows Security Log 202
Windows Service Account 91

WITH ENCRYPTION 167
WITH PRIVATE KEY 145
WMI

www.manaraa.com

250

Index

Windows Management Instrumentation
208

World Health Organization 195
WPA

WiFi Protected Access 89

X
X.509 standard 222
XML 84
xp_enum_oledb_providers 85

www.manaraa.com

www.manaraa.com

www.manaraa.com

SQL Tools
from Red Gate Software

www.manaraa.com

SQL Backup
Compress, encrypt and monitor SQL Server backups

SQL Response
Monitors SQL Servers, with alerts and diagnostic data

from $295

from $495

 Compress database backups by up to 95% for faster backups and restores

 Protect your data with up to 256-bit AES encryption (SQL Backup Pro only)

 Monitor your data with an interactive timeline, so you can check and edit the status

 of past, present and future backup activities

 Optimize backup performance with multiple threads in SQL Backup’s engine

 Investigate long-running queries, SQL deadlocks, blocked processes and more

 to resolve problems sooner

 Intelligent email alerts notify you as problems arise, without overloading you

 with information

 Concise, relevant data provided for each alert raised

 Low-impact monitoring and no installation of components on your SQL Servers

"The software has by far the most
user-friendly, intuitive interface in its
class; the backup routines are well-
compressed, encrypted for peace
of mind and are transported to our
server rapidly. I couldn't be happier."
Kieron Williams IT Manager, Brunning & Price

“SQL Response enables you to monitor,
get alerted and respond to SQL
problems before they start, in an easy-
to-navigate, user-friendly and visually
precise way, with drill-down detail where
you need it most.”
H John B Manderson President and Principle

Consultant, Wireless Ventures Ltd

www.manaraa.com

SQL Compare
Compare and synchronize SQL Server database schemas

SQL Data Compare
Compare and synchronize SQL Server database schemas

from $395

from $395

 Automate database comparisons, and synchronize your databases

 Simple, easy to use, 100% accurate

 Save hours of tedious work, and eliminate manual scripting errors

 Work with live databases, snapshots, script files or backups

 Compare your database contents

 Automatically synchronize your data

 Simplify data migrations

 Row-level restore

 Compare to backups

“SQL Compare and SQL Data Compare
are the best purchases we’ve made in the
.NET/SQL environment. They’ve saved us
hours of development time and the fast,
easy-to-use database comparison gives
us maximum confi dence that our migration
scripts are correct. We rely on these
products for every deployment.”
Paul Tebbutt Technical Lead, Universal Music Group

www.manaraa.com

SQL Prompt
Intelligent code completion and layout for SQL Server

from $195

 Write SQL fast and accurately with code completion

 Understand code more easily with script layout

 Continue to use your current editor – SQL Prompt works within SSMS,

 Query Analyzer, and Visual Studio

 Keyword formatting, join completion, code snippets, and many more

 powerful features

“It’s amazing how such a simple concept
quickly becomes a way of life. With SQL
Prompt there’s no longer any need to
hunt out the design documentation, or to
memorize every fi eld length in the entire
database. It’s about freeing the mind from
being a database repository - and instead
concentrate on problem solving and
solution providing!” Dr Michael Dye Dyetech

SQL Data Generator
Test data generator for SQL Server databases

$295

 Data generation in one click

 Realistic data based on column and table name

 Data can be customized if desired

 Eliminates hours of tedious work

“Red Gate’s SQL Data Generator has
overnight become the principal tool
we use for loading test data to run our
performance and load tests”
Grant Fritchey Principal DBA, FM Global

www.manaraa.com

SQL Toolbelt™

The twelve essential SQL Server tools for database professionals

$1,795

You can buy our acclaimed SQL Server tools individually or bundled.

Our most popular deal is the SQL Toolbelt: all twelve SQL Server tools in a single

installer, with a combined value of $5,240 but an actual price of $1,795, a saving

of more than 65%.

Fully compatible with SQL Server 2000, 2005 and 2008!

SQL Doc
Intelligent code completion and layout for
SQL Server

SQL Dependency Tracker
The graphical tool for tracking database
and cross-server dependencies

SQL Packager
Compress and package your databases
for easy installations and upgrades

SQL Multi Script
Single-click script execution on multiple
SQL Servers

$295 $195

from $295 $195

 Produce simple, legible and fast HTML

 reports for multiple databases

 Documentation is stored as part of

 the database

 Output completed documentation to

 a range of different formats.

 Visually track database object dependencies

 Discover all cross-database and cross-

 server object relationships

 Analyze potential impact of database

 schema changes

 Rapidly document database

 dependencies for reports, version

 control, and database change planning

 Script your entire database accurately

 and quickly

 Move your database from A to B

 Compress your database as an exe file,

 or launch as a Visual Studio project

 Simplify database deployments and

 installations

 Cut out repetitive administration by

 deploying multiple scripts on multiple servers

 with just one click

 Return easy-to-read, aggregated results from

 your queries to export either as a csv or

 .txt file

 Edit queries fast with an intuitive interface,

 including colored syntax highlighting, Find

 and Replace, and split-screen editing

SQL Comparison SDK
Automate database comparisons
and synchronizations

$595

 Full API access to Red Gate

 comparison tools

 Incorporate comparison and

 synchronization functionality into

 your applications

 Schedule any of the tasks you require

 from the SQL Comparison Bundle

SQL Refactor
Refactor and format your SQL code

$295

Twelve tools to help update and maintain

databases quickly and reliably, including:

 Rename object and update all references

 Expand column wildcards, qualify object

 names, and uppercase keywords

 Summarize script

 Encapsulate code as stored procedure

www.manaraa.com

How to Become an
Exceptional DBA
Brad McGehee

A career guide that will show you, step-

by-step, exactly what you can do to

differentiate yourself from the crowd so

that you can be an Exceptional DBA.

While Brad focuses on how to become an

Exceptional SQL Server DBA, the advice

in this book applies to any DBA, no matter

what database software they use. If you

are considering becoming a DBA, or are a

DBA and want to be more than an average

DBA, this is the book to get you started.

ISBN: 978-1-906434-05-2
Published: July 2008

SQL Server Execution Plans
Grant Fritchey

Execution plans show you what’s

going on behind the scenes in SQL

Server and provide you with a wealth

of information on how your queries are

being executed. Grant provides a clear

route through the subject, from the

basics of capturing plans, through their

interpretation, and then right on to how to

use them to understand how you might

optimize your SQL queries, improve your

indexing strategy, and so on. All this rich

information makes the execution plan

a fairly important tool in the tool belt of

pretty much anyone who writes TSQL

to access data in a SQL Server database.

ISBN: 978-1-906434-02-1
Published: June 2008

www.manaraa.com

Two Minute
SQL Server Stumpers

Challenge yourself in a variety of ways

about the different aspects of SQL Server.

Some of the questions are arcane, some

very common, but you’ll learn something

and the wide range of questions will help

you get your mind agile and ready for

some quick thinking. This version is a

compilation of SQL Server 2005 and SQL

Server 2008 questions, to bring you up to

date on the latest version of SQL Server.

So read on, in order, randomly, just start

going through them, but do yourself a

favor and think about each before turning

the page. Challenge yourself and see how

well you do.

ISBN: 978-1-906434-21-2
Published: August 2009

Mastering SQL Server Profi ler
Brad McGehee

For such a potentially powerful tool,

Profiler is surprisingly underused; unless

you have a lot of experience as a DBA, it is

often hard to analyze the data you capture.

As such, many DBAs tend to ignore it and

this is distressing, because Profiler has so

much potential to make a DBA’s life more

productive. SQL Server Profiler records

data about various SQL Server events,

and this data can be used to troubleshoot

a wide range of SQL Server issues, such

as poorly-performing queries, locking and

blocking, excessive table/index scanning,

and a lot more.

ISBN: 978-1-906434-15-1
Published: January 2009

www.manaraa.com

www.manaraa.com

	About the Author
	Acknowledgements
	Introduction
	Rules, Regulations and Responsibility
	Overcoming Encryptionphobia
	What this Book covers
	Code Download
	Feedback

	Chapter 1: Understanding Sensitive Data
	What Makes Data Sensitive?
	Personal, Identifiable and Sensitive Data
	Implications of Data Theft
	Compliance with Regulations

	Types of Sensitive Data
	Government Assigned Identification
	Biometric Data
	Medical Data and History
	Student Education Data
	Employment Records
	Communication Data
	Financial Data
	Trade Secrets

	Group Dynamics of Sensitive Data
	Data at Rest and Data in Transit
	Shields and Swords
	Data Classification
	Schema Architecture
	Obfuscation
	Monitoring

	Summary

	Chapter 2: Data Classification and Roles
	Introducing the HomeLending Database
	Defining Classes of Sensitivity
	Data Classification Based on Data Sensitivity
	Defining Roles According to Classification
	Creating Database Roles
	Creating Logins and Users
	Assigning Members to Roles
	Assigning Permissions to Roles

	Evaluating Data for Classification
	Using Extended Properties to Document Classification
	Refining the Sensitivity Classes
	Disclosure Damage Potential
	Specialized Cases

	Defining Policies According to Classification
	Summary

	Chapter 3: Schema Architecture Strategies
	Overview of HomeLending Schema Architecture
	Protection via Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	Normalization and Data Redundancy
	Normalization and Data Security
	Normalization and the Borrower_Identification table

	Using Database Object Schemas
	Using Views
	Creating Views
	Assigning Permissions to Views

	Harnessing Linked Servers
	Implementing Linked Servers
	Querying Linked Servers
	Network Security

	Summary

	Chapter 4: Encryption Basics for SQL Server
	Cryptographic Keys
	Cryptographic Key Hierarchy
	Service Master Key
	Database Master Key
	Asymmetric Key
	Certificates
	Symmetric Key
	Database Encryption Key
	Passwords

	Key Maintenance
	Extensible Key Management (SQL Server 2008)
	Backing up Keys

	Key Algorithms
	Symmetric Key Algorithms
	Asymmetric Key Algorithms
	Hashing Algorithms

	Built-In Cryptographic Functions
	Encryption Catalog Views
	Summary

	Chapter 5: Cell-Level Encryption
	Granularity of Cell-level Encryption
	Benefits and Disadvantages of Cell-Level Encryption
	Special Considerations
	Searching Encrypted Data
	Encrypting Large Plain Text Values

	Preparing for Cell-Level Encryption
	Reviewing the Borrower_Identification Table
	Database Object Access Control
	Key Encryption and Performance
	Determining the Key Hierarchy

	Implementing Cell-Level Encryption
	Implementing the Key Hierarchy
	Required Schema Modifications

	Views and Stored Procedures
	Failed Decryption Handling
	Data Modification Handling
	Creating the View
	Creating the Stored Procedures

	Summary

	Chapter 6: Transparent Data Encryption
	How TDE Works
	Benefits and Disadvantages of TDE
	Considerations when Implementing TDE
	Master Key Interdependency
	Performance Impact on TempDB
	TDE and Decryption
	Backup and Recovery
	TDE and Replication
	TDE and FileStream Data

	Implementing TDE
	Backup before Proceeding
	The Master Database
	The User Database

	Verifying TDE
	Using Dm_Database_Encryption_Keys
	Verification through Backup and Recovery
	Using EXECUTE AS

	Reversing the Implementation of TDE
	Summary

	Chapter 7: One-Way Encryption
	How One-Way Encryption Works
	Benefits and Disadvantages of One-Way Encryption
	Known Vulnerabilities
	Dictionary Attack Vulnerability
	Rainbow Table Attack Vulnerability
	Hash Collision Vulnerability

	Reducing Vulnerability: Salting a Hash
	Implementing One-Way Encryption
	Create the Primary Hash Column
	Create a Secondary Hash Column for Searching
	Populate the Hash Columns
	Verify the Implementation
	Drop the Unencrypted Column

	Creating the Interface
	Creating the View
	Creating the Stored Procedures
	Setting and Verifying Permissions to the Stored Procedures

	Summary

	Chapter 8: Obfuscation
	Development Environment Considerations
	Obfuscation Methods
	Character Scrambling
	Repeating Character Masking
	Numeric Variance
	Nulling
	Truncation
	Encoding
	Aggregation

	Artificial Data Generation
	Summary

	Chapter 9: Honeycombing a Database
	Implementing a Honeycomb Table
	Creating a Server Audit
	Creating a Database Audit Specification
	Reviewing the Windows Application Log
	Creating an Operator for Notification
	Creating an Alert for Notification
	Creating a Notification
	Summary

	Chapter 10: Layering Solutions
	View from the Top Floor
	Design for Protection
	Applied Permissions and Database Objects
	Cell-Level and One-Way Encryption
	Obfuscation
	Eyes in the Back of the Head
	Good Habits
	Educate, Educate, Educate
	Conclusion

	Appendix A: Views and Functions Reference
	Encryption Catalog Views Reference
	Sys.Asymmetric_Keys
	Sys.Certificates
	Sys.Credentials
	Sys.Crypt_Properties
	Sys.Cryptographic_Providers
	Sys.Key_Encryptions
	Sys.OpenKeys
	Sys.Symmetric_Keys

	Built-In Cryptographic Functions Reference
	AsymKey_ID
	Cert_ID
	CertProperty
	DecryptByAsymKey
	DecryptByCert
	DecryptByKeyAutoAsymKey
	DecryptByKeyAutoCert
	DecryptByKey
	DecryptByPassphrase
	EncryptByAsymKey
	EncryptByCert
	EncryptByKey
	EncryptByPassphrase
	Key_ID
	Key_GUID
	SignByAsymKey
	SignByCert
	VerifySignedByAsymKey
	VerifySignedByCert

	String Manipulation Function Reference
	ASCII and CHAR
	LEFT, RIGHT and SUBSTRING
	REPLACE
	REPLICATE and SPACE
	REVERSE
	STUFF
	RAND

	Appendix B: The HomeLending database
	Database Creation Scripts
	Database Roles, Users and Schema Scripts
	Encryption Scripts
	Obfuscation and Honeycombing Scripts
	Creating the HomeLending Database
	Creating the HomeLending Database Tables
	Executing Subsequent Scripts

	Index

